Sandesh Swamy
2023
Contextual Dynamic Prompting for Response Generation in Task-oriented Dialog Systems
Sandesh Swamy
|
Narges Tabari
|
Chacha Chen
|
Rashmi Gangadharaiah
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Response generation is one of the critical components in task-oriented dialog systems. Existing studies have shown that large pre-trained language models can be adapted to this task. The typical paradigm of adapting such extremely large language models would be by fine-tuning on the downstream tasks which is not only time-consuming but also involves significant resources and access to fine-tuning data. Prompting (Schick and Schütze, 2020) has been an alternative to fine-tuning in many NLP tasks. In our work, we explore the idea of using prompting for response generation in task-oriented dialog systems. Specifically, we propose an approach that performs contextual dynamic prompting where the prompts are learnt from dialog contexts. We aim to distill useful prompting signals from the dialog context. On experiments with MultiWOZ 2.2 dataset (Zang et al., 2020), we show that contextual dynamic prompts improve response generation in terms of combined score (Mehri et al., 2019) by 3 absolute points, and an additional 17 points when dialog states are incorporated. Furthermore, we carried out human annotation on these conversations and found that agents which incorporate context are preferred over agents with vanilla prefix-tuning.
2017
“i have a feeling trump will win..................”: Forecasting Winners and Losers from User Predictions on Twitter
Sandesh Swamy
|
Alan Ritter
|
Marie-Catherine de Marneffe
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
Social media users often make explicit predictions about upcoming events. Such statements vary in the degree of certainty the author expresses toward the outcome: “Leonardo DiCaprio will win Best Actor” vs. “Leonardo DiCaprio may win” or “No way Leonardo wins!”. Can popular beliefs on social media predict who will win? To answer this question, we build a corpus of tweets annotated for veridicality on which we train a log-linear classifier that detects positive veridicality with high precision. We then forecast uncertain outcomes using the wisdom of crowds, by aggregating users’ explicit predictions. Our method for forecasting winners is fully automated, relying only on a set of contenders as input. It requires no training data of past outcomes and outperforms sentiment and tweet volume baselines on a broad range of contest prediction tasks. We further demonstrate how our approach can be used to measure the reliability of individual accounts’ predictions and retrospectively identify surprise outcomes.