Sandra Bringay
2019
LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation Modeling for Emotion Detection and Classification
Waleed Ragheb
|
Jérôme Azé
|
Sandra Bringay
|
Maximilien Servajean
Proceedings of the 13th International Workshop on Semantic Evaluation
This paper addresses the problem of modeling textual conversations and detecting emotions. Our proposed model makes use of 1) deep transfer learning rather than the classical shallow methods of word embedding; 2) self-attention mechanisms to focus on the most important parts of the texts and 3) turn-based conversational modeling for classifying the emotions. The approach does not rely on any hand-crafted features or lexicons. Our model was evaluated on the data provided by the SemEval-2019 shared task on contextual emotion detection in text. The model shows very competitive results.
2018
LIRMM@DEFT-2018 – Modèle de classification de la vectorisation des documents (LIRMM DEFT-2018 – Document Vectorization Classification model )
Waleed Mohamed Azmy
|
Bilel Moulahi
|
Sandra Bringay
|
Maximilien Servajean
Actes de la Conférence TALN. Volume 2 - Démonstrations, articles des Rencontres Jeunes Chercheurs, ateliers DeFT
Dans ce papier, nous décrivons notre participation au défi d’analyse de texte DEFT 2018. Nous avons participé à deux tâches : (i) classification transport/non-transport et (ii) analyse de polarité globale des tweets : positifs, negatifs, neutres et mixtes. Nous avons exploité un réseau de neurone basé sur un perceptron multicouche mais utilisant une seule couche cachée.