In interactions between users and language model agents, user utterances frequently exhibit ellipsis (omission of words or phrases) or imprecision (lack of exactness) to prioritize efficiency. This can lead to varying interpretations of the same input based on different assumptions or background knowledge. It is thus crucial for agents to adeptly handle the inherent ambiguity in queries to ensure reliability. However, even state-of-the-art large language models (LLMs) still face challenges in such scenarios, primarily due to the following hurdles: (1) LLMs are not explicitly trained to deal with ambiguous utterances; (2) the degree of ambiguity perceived by the LLMs may vary depending on the possessed knowledge. To address these issues, we propose Alignment with Perceived Ambiguity (APA), a novel pipeline that aligns LLMs to manage ambiguous queries by leveraging their own assessment of ambiguity (i.e., perceived ambiguity). Experimental results on question-answering datasets demonstrate that APA empowers LLMs to explicitly detect and manage ambiguous queries while retaining the ability to answer clear questions. Furthermore, our finding proves that APA excels beyond training with gold-standard labels, especially in out-of-distribution scenarios. The data and code are available at https://github.com/heyjoonkim/APA.
When using large language models (LLMs) in knowledge-intensive tasks, such as open-domain question answering, external context can bridge the gap between external knowledge and the LLMs’ parametric knowledge.Recent research has been developed to amplify contextual knowledge over the parametric knowledge of LLMs with contrastive decoding approaches.While these approaches could yield truthful responses when relevant context is provided, they are prone to vulnerabilities when faced with noisy contexts.We extend the scope of previous studies to encompass noisy contexts and propose adaptive contrastive decoding (ACD) to leverage contextual influence effectively.ACD demonstrates improvements in open-domain question answering tasks compared to baselines, especially in robustness by remaining undistracted by noisy contexts in retrieval-augmented generation.
Large language models (LLMs) are utilized in various studies, and they also demonstrate a potential to function independently as a recommendation model. Nevertheless, training sequences and text labels modifies LLMs’ pre-trained weights, diminishing their inherent strength in constructing and comprehending natural language sentences. In this study, we propose a reconstruction-based LLM recommendation model (ReLRec) that harnesses the feature extraction capability of LLMs, while preserving LLMs’ sentence generation abilities. We reconstruct the user and item pseudo-labels generated from user reviews, while training on sequential data, aiming to exploit the key features of both users and items. Experimental results demonstrate the efficacy of label reconstruction in sequential recommendation tasks.
Utilizing language models (LMs) without internal access is becoming an attractive paradigm in the field of NLP as many cutting-edge LMs are released through APIs and boast a massive scale. The de-facto method in this type of black-box scenario is known as prompting, which has shown progressive performance enhancements in situations where data labels are scarce or unavailable. Despite their efficacy, they still fall short in comparison to fully supervised counterparts and are generally brittle to slight modifications. In this paper, we propose Clustering-enhanced Linear Discriminative Analysis (CELDA), a novel approach that improves the text classification accuracy with a very weak-supervision signal (i.e., name of the labels).Our framework draws a precise decision boundary without accessing weights or gradients of the LM model or data labels. The core ideas of CELDA are twofold:(1) extracting a refined pseudo-labeled dataset from an unlabeled dataset, and (2) training a lightweight and robust model on the top of LM, which learns an accurate decision boundary from an extracted noisy dataset. Throughout in-depth investigations on various datasets, we demonstrated that CELDA reaches new state-of-the-art in weakly-supervised text classification and narrows the gap with a fully-supervised model. Additionally, our proposed methodology can be applied universally to any LM and has the potential to scale to larger models, making it a more viable option for utilizing large LMs.
When deploying machine learning systems to the wild, it is highly desirable for them to effectively leverage prior knowledge to the unfamiliar domain while also firing alarms to anomalous inputs. In order to address these requirements, Universal Domain Adaptation (UniDA) has emerged as a novel research area in computer vision, focusing on achieving both adaptation ability and robustness (i.e., the ability to detect out-of-distribution samples). While UniDA has led significant progress in computer vision, its application on language input still needs to be explored despite its feasibility. In this paper, we propose a comprehensive benchmark for natural language that offers thorough viewpoints of the model’s generalizability and robustness. Our benchmark encompasses multiple datasets with varying difficulty levels and characteristics, including temporal shifts and diverse domains. On top of our testbed, we validate existing UniDA methods from computer vision and state-of-the-art domain adaptation techniques from NLP literature, yielding valuable findings: We observe that UniDA methods originally designed for image input can be effectively transferred to the natural language domain while also underscoring the effect of adaptation difficulty in determining the model’s performance.
As the size of the pre-trained language model (PLM) continues to increase, numerous parameter-efficient transfer learning methods have been proposed recently to compensate for the high cost of fine-tuning. While large PLMs and various PETL methods have achieved impressive results on various benchmarks, it is uncertain whether they can effectively handle inputs that have been distributionally shifted. In this study, we systematically explore how the ability to detect out-of-distribution (OOD) changes as the size of the PLM grows or the transfer methods are altered. Specifically, we evaluated various PETL techniques, including fine-tuning, Adapter, LoRA, and prefix-tuning, with various language models with different scales.
Despite recent explosion of interests in in-context learning, the underlying mechanism and the precise impact of the quality of demonstrations remain elusive.Intuitively, ground-truth labels should have as much impact in in-context learning (ICL) as supervised learning, but recent work reported that the input-label correspondence is significantly less important than previously thought.Intrigued by this counter-intuitive observation, we re-examine the importance of ground-truth labels in in-context learning.With the introduction of two novel metrics, namely Label-Correctness Sensitivity and Ground-truth Label Effect Ratio (GLER), we were able to conduct quantifiable analysis on the impact of ground-truth label demonstrations.Through extensive analyses, we find that the correct input-label mappings can have varying impacts on the downstream in-context learning performances, depending on the experimental configuration.Through additional studies, we identify key components, such as the verbosity of prompt templates and the language model size, as the controlling factor to achieve more noise-resilient ICL.
Out-of-distribution (OOD) detection aims to discern outliers from the intended data distribution, which is crucial to maintaining high reliability and a good user experience.Most recent studies in OOD detection utilize the information from a single representation that resides in the penultimate layer to determine whether the input is anomalous or not.Although such a method is straightforward, the potential of diverse information in the intermediate layers is overlooked.In this paper, we propose a novel framework based on contrastive learning that encourages intermediate features to learn layer-specialized representations and assembles them implicitly into a single representation to absorb rich information in the pre-trained language model. Extensive experiments in various intent classification and OOD datasets demonstrate that our approach is significantly more effective than other works.
Although BERT and its variants have reshaped the NLP landscape, it still remains unclear how best to derive sentence embeddings from such pre-trained Transformers. In this work, we propose a contrastive learning method that utilizes self-guidance for improving the quality of BERT sentence representations. Our method fine-tunes BERT in a self-supervised fashion, does not rely on data augmentation, and enables the usual [CLS] token embeddings to function as sentence vectors. Moreover, we redesign the contrastive learning objective (NT-Xent) and apply it to sentence representation learning. We demonstrate with extensive experiments that our approach is more effective than competitive baselines on diverse sentence-related tasks. We also show it is efficient at inference and robust to domain shifts.
As it has been unveiled that pre-trained language models (PLMs) are to some extent capable of recognizing syntactic concepts in natural language, much effort has been made to develop a method for extracting complete (binary) parses from PLMs without training separate parsers. We improve upon this paradigm by proposing a novel chart-based method and an effective top-K ensemble technique. Moreover, we demonstrate that we can broaden the scope of application of the approach into multilingual settings. Specifically, we show that by applying our method on multilingual PLMs, it becomes possible to induce non-trivial parses for sentences from nine languages in an integrated and language-agnostic manner, attaining performance superior or comparable to that of unsupervised PCFGs. We also verify that our approach is robust to cross-lingual transfer. Finally, we provide analyses on the inner workings of our method. For instance, we discover universal attention heads which are consistently sensitive to syntactic information irrespective of the input language.
We propose a novel method that enables us to determine words that deserve to be emphasized from written text in visual media, relying only on the information from the self-attention distributions of pre-trained language models (PLMs). With extensive experiments and analyses, we show that 1) our zero-shot approach is superior to a reasonable baseline that adopts TF-IDF and that 2) there exist several attention heads in PLMs specialized for emphasis selection, confirming that PLMs are capable of recognizing important words in sentences.
Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goaloriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers’ robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs – dialog response generation and user simulation, where our model outperforms previous strong baselines.
We present several techniques to tackle the mismatch in class distributions between training and test data in the Contextual Emotion Detection task of SemEval 2019, by extending the existing methods for class imbalance problem. Reducing the distance between the distribution of prediction and ground truth, they consistently show positive effects on the performance. Also we propose a novel neural architecture which utilizes representation of overall context as well as of each utterance. The combination of the methods and the models achieved micro F1 score of about 0.766 on the final evaluation.
We present a latent variable model for predicting the relationship between a pair of text sequences. Unlike previous auto-encoding–based approaches that consider each sequence separately, our proposed framework utilizes both sequences within a single model by generating a sequence that has a given relationship with a source sequence. We further extend the cross-sentence generating framework to facilitate semi-supervised training. We also define novel semantic constraints that lead the decoder network to generate semantically plausible and diverse sequences. We demonstrate the effectiveness of the proposed model from quantitative and qualitative experiments, while achieving state-of-the-art results on semi-supervised natural language inference and paraphrase identification.
We propose a simple yet effective approach for improving Korean word representations using additional linguistic annotation (i.e. Hanja). We employ cross-lingual transfer learning in training word representations by leveraging the fact that Hanja is closely related to Chinese. We evaluate the intrinsic quality of representations learned through our approach using the word analogy and similarity tests. In addition, we demonstrate their effectiveness on several downstream tasks, including a novel Korean news headline generation task.
As an attempt to combine extractive and abstractive summarization, Sentence Rewriting models adopt the strategy of extracting salient sentences from a document first and then paraphrasing the selected ones to generate a summary. However, the existing models in this framework mostly rely on sentence-level rewards or suboptimal labels, causing a mismatch between a training objective and evaluation metric. In this paper, we present a novel training signal that directly maximizes summary-level ROUGE scores through reinforcement learning. In addition, we incorporate BERT into our model, making good use of its ability on natural language understanding. In extensive experiments, we show that a combination of our proposed model and training procedure obtains new state-of-the-art performance on both CNN/Daily Mail and New York Times datasets. We also demonstrate that it generalizes better on DUC-2002 test set.
We present a novel neural architecture for the Argument Reasoning Comprehension task of SemEval 2018. It is a simple neural network consisting of three parts, collectively judging whether the logic built on a set of given sentences (a claim, reason, and warrant) is plausible or not. The model utilizes contextualized word vectors pre-trained on large machine translation (MT) datasets as a form of transfer learning, which can help to mitigate the lack of training data. Quantitative analysis shows that simply leveraging LSTMs trained on MT datasets outperforms several baselines and non-transferred models, achieving accuracies of about 70% on the development set and about 60% on the test set.
When we build a neural network model predicting the relationship between two sentences, the most general and intuitive approach is to use a Siamese architecture, where the sentence vectors obtained from a shared encoder is given as input to a classifier. For the classifier to work effectively, it is important to extract appropriate features from the two vectors and feed them as input. There exist several previous works that suggest heuristic-based function for matching sentence vectors, however it cannot be said that the heuristics tailored for a specific task generalize to other tasks. In this work, we propose a new matching function, ElBiS, that learns to model element-wise interaction between two vectors. From experiments, we empirically demonstrate that the proposed ElBiS matching function outperforms the concatenation-based or heuristic-based matching functions on natural language inference and paraphrase identification, while maintaining the fused representation compact.
Word embedding has become a fundamental component to many NLP tasks such as named entity recognition and machine translation. However, popular models that learn such embeddings are unaware of the morphology of words, so it is not directly applicable to highly agglutinative languages such as Korean. We propose a syllable-based learning model for Korean using a convolutional neural network, in which word representation is composed of trained syllable vectors. Our model successfully produces morphologically meaningful representation of Korean words compared to the original Skip-gram embeddings. The results also show that it is quite robust to the Out-of-Vocabulary problem.
Recently, there has been increased interest in utilizing characters or subwords for natural language processing (NLP) tasks. However, the effect of utilizing character, subword, and word-level information simultaneously has not been examined so far. In this paper, we propose a model to leverage various levels of input features to improve on the performance of an supersense tagging task. Detailed analysis of experimental results show that different levels of input representation offer distinct characteristics that explain performance discrepancy among different tasks.