Sangwon Yoon


pdf bib
Detecting Rumor Veracity with Only Textual Information by Double-Channel Structure
Alex Gunwoo Kim | Sangwon Yoon
Proceedings of the Tenth International Workshop on Natural Language Processing for Social Media

Kyle (1985) proposes two types of rumors: informed rumors which are based on some private information and uninformed rumors which are not based on any information (i.e. bluffing). Also, prior studies find that when people have credible source of information, they are likely to use a more confident textual tone in their spreading of rumors. Motivated by these theoretical findings, we propose a double-channel structure to determine the ex-ante veracity of rumors on social media. Our ultimate goal is to classify each rumor into true, false, or unverifiable category. We first assign each text into either certain (informed rumor) or uncertain (uninformed rumor) category. Then, we apply lie detection algorithm to informed rumors and thread-reply agreement detection algorithm to uninformed rumors. Using the dataset of SemEval 2019 Task 7, which requires ex-ante threefold classification (true, false, or unverifiable) of social media rumors, our model yields a macro-F1 score of 0.4027, outperforming all the baseline models and the second-place winner (Gorrell et al., 2019). Furthermore, we empirically validate that the double-channel structure outperforms single-channel structures which use either lie detection or agreement detection algorithm to all posts.


pdf bib
Self-Adapter at SemEval-2021 Task 10: Entropy-based Pseudo-Labeler for Source-free Domain Adaptation
Sangwon Yoon | Yanghoon Kim | Kyomin Jung
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Source-free domain adaptation is an emerging line of work in deep learning research since it is closely related to the real-world environment. We study the domain adaption in the sequence labeling problem where the model trained on the source domain data is given. We propose two methods: Self-Adapter and Selective Classifier Training. Self-Adapter is a training method that uses sentence-level pseudo-labels filtered by the self-entropy threshold to provide supervision to the whole model. Selective Classifier Training uses token-level pseudo-labels and supervises only the classification layer of the model. The proposed methods are evaluated on data provided by SemEval-2021 task 10 and Self-Adapter achieves 2nd rank performance.

pdf bib
Corporate Bankruptcy Prediction with Domain-Adapted BERT
Alex Gunwoo Kim | Sangwon Yoon
Proceedings of the Third Workshop on Economics and Natural Language Processing

This study performs BERT-based analysis, which is a representative contextualized language model, on corporate disclosure data to predict impending bankruptcies. Prior literature on bankruptcy prediction mainly focuses on developing more sophisticated prediction methodologies with financial variables. However, in our study, we focus on improving the quality of input dataset. Specifically, we employ BERT model to perform sentiment analysis on MD&A disclosures. We show that BERT outperforms dictionary-based predictions and Word2Vec-based predictions in terms of adjusted R-square in logistic regression, k-nearest neighbor (kNN-5), and linear kernel support vector machine (SVM). Further, instead of pre-training the BERT model from scratch, we apply self-learning with confidence-based filtering to corporate disclosure data (10-K). We achieve the accuracy rate of 91.56% and demonstrate that the domain adaptation procedure brings a significant improvement in prediction accuracy.