Sangwu Lee
2024
VISREAS: Complex Visual Reasoning with Unanswerable Questions
Syeda Nahida Akter
|
Sangwu Lee
|
Yingshan Chang
|
Yonatan Bisk
|
Eric Nyberg
Findings of the Association for Computational Linguistics: ACL 2024
Verifying a question’s validity before answering is crucial in real-world applications, where users may provide imperfect instructions. In this scenario, an ideal model should address the discrepancies in the query and convey them to the users rather than generating the best possible answer. Addressing this requirement, we introduce a new compositional visual question-answering dataset, VisReas, that consists of answerable and unanswerable visual queries formulated by traversing and perturbing commonalities and differences among objects, attributes, and relations. VisReas contains 2.07M semantically diverse queries generated automatically using Visual Genome scene graphs. The unique feature of this task, validating question answerability with respect to an image before answering, and the poor performance of state-of-the-art models inspired the design of a new modular baseline, Logic2Vision that reasons by producing and executing pseudocode without any external modules to generate the answer. Logic2Vision outperforms generative models in VisReas (+4.82% over LLaVA-1.5; +12.23% over InstructBLIP) and achieves a significant gain in performance against the classification models.
2020
Integrating Multimodal Information in Large Pretrained Transformers
Wasifur Rahman
|
Md Kamrul Hasan
|
Sangwu Lee
|
AmirAli Bagher Zadeh
|
Chengfeng Mao
|
Louis-Philippe Morency
|
Ehsan Hoque
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Recent Transformer-based contextual word representations, including BERT and XLNet, have shown state-of-the-art performance in multiple disciplines within NLP. Fine-tuning the trained contextual models on task-specific datasets has been the key to achieving superior performance downstream. While fine-tuning these pre-trained models is straightforward for lexical applications (applications with only language modality), it is not trivial for multimodal language (a growing area in NLP focused on modeling face-to-face communication). More specifically, this is due to the fact that pre-trained models don’t have the necessary components to accept two extra modalities of vision and acoustic. In this paper, we proposed an attachment to BERT and XLNet called Multimodal Adaptation Gate (MAG). MAG allows BERT and XLNet to accept multimodal nonverbal data during fine-tuning. It does so by generating a shift to internal representation of BERT and XLNet; a shift that is conditioned on the visual and acoustic modalities. In our experiments, we study the commonly used CMU-MOSI and CMU-MOSEI datasets for multimodal sentiment analysis. Fine-tuning MAG-BERT and MAG-XLNet significantly boosts the sentiment analysis performance over previous baselines as well as language-only fine-tuning of BERT and XLNet. On the CMU-MOSI dataset, MAG-XLNet achieves human-level multimodal sentiment analysis performance for the first time in the NLP community.
Search
Fix data
Co-authors
- Syeda Nahida Akter 1
- AmirAli Bagher Zadeh 1
- Yonatan Bisk 1
- Yingshan Chang 1
- Md Kamrul Hasan 1
- show all...