Sanjeev Kumar Karn


pdf bib
RadLing: Towards Efficient Radiology Report Understanding
Rikhiya Ghosh | Oladimeji Farri | Sanjeev Kumar Karn | Manuela Danu | Ramya Vunikili | Larisa Micu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Most natural language tasks in the radiology domain use language models pre-trained on biomedical corpus. There are few pretrained language models trained specifically for radiology, and fewer still that have been trained in a low data setting and gone on to produce comparable results in fine-tuning tasks. We present RadLing, a continuously pretrained language model using ELECTRA-small architecture, trained using over 500K radiology reports that can compete with state-of-the-art results for fine tuning tasks in radiology domain. Our main contribution in this paper is knowledge-aware masking which is an taxonomic knowledge-assisted pre-training task that dynamically masks tokens to inject knowledge during pretraining. In addition, we also introduce an knowledge base-aided vocabulary extension to adapt the general tokenization vocabulary to radiology domain.

pdf bib
shs-nlp at RadSum23: Domain-Adaptive Pre-training of Instruction-tuned LLMs for Radiology Report Impression Generation
Sanjeev Kumar Karn | Rikhiya Ghosh | Kusuma P | Oladimeji Farri
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

Instruction-tuned generative large language models (LLMs), such as ChatGPT and Bloomz, possess excellent generalization abilities. However, they face limitations in understanding radiology reports, particularly when generating the IMPRESSIONS section from the FINDINGS section. These models tend to produce either verbose or incomplete IMPRESSIONS, mainly due to insufficient exposure to medical text data during training. We present a system that leverages large-scale medical text data for domain-adaptive pre-training of instruction-tuned LLMs, enhancing their medical knowledge and performance on specific medical tasks. We demonstrate that this system performs better in a zero-shot setting compared to several pretrain-and-finetune adaptation methods on the IMPRESSIONS generation task. Furthermore, it ranks 1st among participating systems in Task 1B: Radiology Report Summarization.


pdf bib
Differentiable Multi-Agent Actor-Critic for Multi-Step Radiology Report Summarization
Sanjeev Kumar Karn | Ning Liu | Hinrich Schuetze | Oladimeji Farri
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The IMPRESSIONS section of a radiology report about an imaging study is a summary of the radiologist’s reasoning and conclusions, and it also aids the referring physician in confirming or excluding certain diagnoses. A cascade of tasks are required to automatically generate an abstractive summary of the typical information-rich radiology report. These tasks include acquisition of salient content from the report and generation of a concise, easily consumable IMPRESSIONS section. Prior research on radiology report summarization has focused on single-step end-to-end models – which subsume the task of salient content acquisition. To fully explore the cascade structure and explainability of radiology report summarization, we introduce two innovations. First, we design a two-step approach: extractive summarization followed by abstractive summarization. Second, we additionally break down the extractive part into two independent tasks: extraction of salient (1) sentences and (2) keywords. Experiments on English radiology reports from two clinical sites show our novel approach leads to a more precise summary compared to single-step and to two-step-with-single-extractive-process baselines with an overall improvement in F1 score of 3-4%.


pdf bib
Few-Shot Learning of an Interleaved Text Summarization Model by Pretraining with Synthetic Data
Sanjeev Kumar Karn | Francine Chen | Yan-Ying Chen | Ulli Waltinger | Hinrich Schütze
Proceedings of the Second Workshop on Domain Adaptation for NLP

Interleaved texts, where posts belonging to different threads occur in a sequence, commonly occur in online chat posts, so that it can be time-consuming to quickly obtain an overview of the discussions. Existing systems first disentangle the posts by threads and then extract summaries from those threads. A major issue with such systems is error propagation from the disentanglement component. While end-to-end trainable summarization system could obviate explicit disentanglement, such systems require a large amount of labeled data. To address this, we propose to pretrain an end-to-end trainable hierarchical encoder-decoder system using synthetic interleaved texts. We show that by fine-tuning on a real-world meeting dataset (AMI), such a system out-performs a traditional two-step system by 22%. We also compare against transformer models and observed that pretraining with synthetic data both the encoder and decoder outperforms the BertSumExtAbs transformer model which pretrains only the encoder on a large dataset.


pdf bib
News Article Teaser Tweets and How to Generate Them
Sanjeev Kumar Karn | Mark Buckley | Ulli Waltinger | Hinrich Schütze
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this work, we define the task of teaser generation and provide an evaluation benchmark and baseline systems for the process of generating teasers. A teaser is a short reading suggestion for an article that is illustrative and includes curiosity-arousing elements to entice potential readers to read particular news items. Teasers are one of the main vehicles for transmitting news to social media users. We compile a novel dataset of teasers by systematically accumulating tweets and selecting those that conform to the teaser definition. We have compared a number of neural abstractive architectures on the task of teaser generation and the overall best performing system is See et al. seq2seq with pointer network.