Sarah Preum


2023

pdf bib
Statistical Depth for Ranking and Characterizing Transformer-Based Text Embeddings
Parker Seegmiller | Sarah Preum
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The popularity of transformer-based text embeddings calls for better statistical tools for measuring distributions of such embeddings. One such tool would be a method for ranking texts within a corpus by centrality, i.e. assigning each text a number signifying how representative that text is of the corpus as a whole. However, an intrinsic center-outward ordering of high-dimensional text representations is not trivial. A statistical depth is a function for ranking k-dimensional objects by measuring centrality with respect to some observed k-dimensional distribution. We adopt a statistical depth to measure distributions of transformer-based text embeddings, transformer-based text embedding (TTE) depth, and introduce the practical use of this depth for both modeling and distributional inference in NLP pipelines. We first define TTE depth and an associated rank sum test for determining whether two corpora differ significantly in embedding space. We then use TTE depth for the task of in-context learning prompt selection, showing that this approach reliably improves performance over statistical baseline approaches across six text classification tasks. Finally, we use TTE depth and the associated rank sum test to characterize the distributions of synthesized and human-generated corpora, showing that five recent synthetic data augmentation processes cause a measurable distributional shift away from associated human-generated text.

pdf bib
Text Encoders Lack Knowledge: Leveraging Generative LLMs for Domain-Specific Semantic Textual Similarity
Joseph Gatto | Omar Sharif | Parker Seegmiller | Philip Bohlman | Sarah Preum
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Amidst the sharp rise in the evaluation of large language models (LLMs) on various tasks, we find that semantic textual similarity (STS) has been under-explored. In this study, we show that STS can be cast as a text generation problem while maintaining strong performance on multiple STS benchmarks. Additionally, we show generative LLMs significantly outperform existing encoder-based STS models when characterizing the semantic similarity between two texts with complex semantic relationships dependent on world knowledge. We validate this claim by evaluating both generative LLMs and existing encoder-based STS models on three newly-collected STS challenge sets which require world knowledge in the domains of Health, Politics, and Sports. All newly-collected data is sourced from social media content posted after May 2023 to ensure the performance of closed-source models like ChatGPT cannot be credited to memorization. Our results show that, on average, generative LLMs outperform the best encoder-only baselines by an average of 22.3% on STS tasks requiring world knowledge. Our results suggest generative language models with STS-specific prompting strategies achieve state-of-the-art performance in complex, domain-specific STS tasks.

pdf bib
Chain-of-Thought Embeddings for Stance Detection on Social Media
Joseph Gatto | Omar Sharif | Sarah Preum
Findings of the Association for Computational Linguistics: EMNLP 2023

Stance detection on social media is challenging for Large Language Models (LLMs), as emerging slang and colloquial language in online conversations often contain deeply implicit stance labels. Chain-of-Thought (COT) prompting has recently been shown to improve performance on stance detection tasks — alleviating some of these issues. However, COT prompting still struggles with implicit stance identification. This challenge arises because many samples are initially challenging to comprehend before a model becomes familiar with the slang and evolving knowledge related to different topics, all of which need to be acquired through the training data. In this study, we address this problem by introducing COT Embeddings which improve COT performance on stance detection tasks by embedding COT reasonings and integrating them into a traditional RoBERTa-based stance detection pipeline. Our analysis demonstrates that 1) text encoders can leverage COT reasonings with minor errors or hallucinations that would otherwise distort the COT output label. 2) Text encoders can overlook misleading COT reasoning when a sample’s prediction heavily depends on domain-specific patterns. Our model achieves SOTA performance on multiple stance detection datasets collected from social media.