Sardar Hamidian


2024

pdf bib
Improving Content Recommendation: Knowledge Graph-Based Semantic Contrastive Learning for Diversity and Cold-Start Users
Yejin Kim | Scott Rome | Kevin Foley | Mayur Nankani | Rimon Melamed | Javier Morales | Abhay K. Yadav | Maria Peifer | Sardar Hamidian | H. Howie Huang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Addressing the challenges related to data sparsity, cold-start problems, and diversity in recommendation systems is both crucial and demanding. Many current solutions leverage knowledge graphs to tackle these issues by combining both item-based and user-item collaborative signals. A common trend in these approaches focuses on improving ranking performance at the cost of escalating model complexity, reducing diversity, and complicating the task. It is essential to provide recommendations that are both personalized and diverse, rather than solely relying on achieving high rank-based performance, such as Click-through rate, Recall, etc. In this paper, we propose a hybrid multi-task learning approach, training on user-item and item-item interactions. We apply item-based contrastive learning on descriptive text, sampling positive and negative pairs based on item metadata. Our approach allows the model to better understand the relationships between entities within the knowledge graph by utilizing semantic information from text. It leads to more accurate, relevant, and diverse user recommendations and a benefit that extends even to cold-start users who have few interactions with items. We perform extensive experiments on two widely used datasets to validate the effectiveness of our approach. Our findings demonstrate that jointly training user-item interactions and item-based signals using synopsis text is highly effective. Furthermore, our results provide evidence that item-based contrastive learning enhances the quality of entity embeddings, as indicated by metrics such as uniformity and alignment.

pdf bib
YSP at SemEval-2024 Task 1: Enhancing Sentence Relatedness Assessment using Siamese Networks
Yasamin Aali | Sardar Hamidian | Parsa Farinneya
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

In this paper we present the system for Track A in the SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages (STR). The proposed system integrates a Siamese Network architecture with pre-trained language models, including BERT, RoBERTa, and the Universal Sentence Encoder (USE). Through rigorous experimentation and analysis, we evaluate the performance of these models across multiple languages. Our findings reveal that the Universal Sentence Encoder excels in capturing semantic similarities, outperforming BERT and RoBERTa in most scenarios. Particularly notable is the USE’s exceptional performance in English and Marathi. These results emphasize the importance of selecting appropriate pre-trained models based on linguistic considerations and task requirements.

2022

pdf bib
A Quantitative and Qualitative Analysis of Schizophrenia Language
Amal Alqahtani | Efsun Sarioglu Kayi | Sardar Hamidian | Michael Compton | Mona Diab
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)

Schizophrenia is one of the most disabling mental health conditions to live with. Approximately one percent of the population has schizophrenia which makes it fairly common, and it affects many people and their families. Patients with schizophrenia suffer different symptoms: formal thought disorder (FTD), delusions, and emotional flatness. In this paper, we quantitatively and qualitatively analyze the language of patients with schizophrenia measuring various linguistic features in two modalities: speech and written text. We examine the following features: coherence and cohesion of thoughts, emotions, specificity, level of commit- ted belief (LCB), and personality traits. Our results show that patients with schizophrenia score high in fear and neuroticism compared to healthy controls. In addition, they are more committed to their beliefs, and their writing lacks details. They score lower in most of the linguistic features of cohesion with significant p-values.

2021

pdf bib
Active Learning for Rumor Identification on Social Media
Parsa Farinneya | Mohammad Mahdi Abdollah Pour | Sardar Hamidian | Mona Diab
Findings of the Association for Computational Linguistics: EMNLP 2021

Social media has emerged as a key channel for seeking information. Online users spend several hours reading, posting, and searching for news on microblogging platforms daily. However, this could act as a double-edged sword especially when not all information online is reliable. Moreover, the inherently unmoderated nature of social media renders identifying unverified information ever more challenging. Most of the existing approaches for rumor tracking are not scalable because of their dependency on a significant amount of labeled data. In this work, we investigate this problem from different angles. We design an Active-Transfer Learning (ATL) strategy to identify rumors with a limited amount of annotated data. We go beyond that and investigate the impact of leveraging various machine learning approaches in addition to different contextual representations. We discuss the impact of multiple classifiers on a limited amount of annotated data followed by an interactive approach to gradually update the models by adding the least certain samples (LCS) from the pool of unlabeled data. Our proposed Active Learning (AL) strategy achieves faster convergence in terms of the F-score while requiring fewer annotated samples (42% of the whole dataset for the best model).

2019

pdf bib
GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on Social Media
Sardar Hamidian | Mona Diab
Proceedings of the 13th International Workshop on Semantic Evaluation

Social media plays a crucial role as the main resource news for information seekers online. However, the unmoderated feature of social media platforms lead to the emergence and spread of untrustworthy contents which harm individuals or even societies. Most of the current automated approaches for automatically determining the veracity of a rumor are not generalizable for novel emerging topics. This paper describes our hybrid system comprising rules and a machine learning model which makes use of replied tweets to identify the veracity of the source tweet. The proposed system in this paper achieved 0.435 F-Macro in stance classification, and 0.262 F-macro and 0.801 RMSE in rumor verification tasks in Task7 of SemEval 2019.

2016

pdf bib
Rumor Identification and Belief Investigation on Twitter
Sardar Hamidian | Mona Diab
Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis