Sari Dewi Budiwati


2021

pdf bib
To Optimize, or Not to Optimize, That Is the Question: TelU-KU Models for WMT21 Large-Scale Multilingual Machine Translation
Sari Dewi Budiwati | Tirana Fatyanosa | Mahendra Data | Dedy Rahman Wijaya | Patrick Adolf Telnoni | Arie Ardiyanti Suryani | Agus Pratondo | Masayoshi Aritsugi
Proceedings of the Sixth Conference on Machine Translation

We describe TelU-KU models of large-scale multilingual machine translation for five Southeast Asian languages: Javanese, Indonesian, Malay, Tagalog, Tamil, and English. We explore a variation of hyperparameters of flores101_mm100_175M model using random search with 10% of datasets to improve BLEU scores of all thirty language pairs. We submitted two models, TelU-KU-175M and TelU-KU- 175M_HPO, with average BLEU scores of 12.46 and 13.19, respectively. Our models show improvement in most language pairs after optimizing the hyperparameters. We also identified three language pairs that obtained a BLEU score of more than 15 while using less than 70 sentences of the training dataset: Indonesian-Tagalog, Tagalog-Indonesian, and Malay-Tagalog.

2019

pdf bib
DBMS-KU Interpolation for WMT19 News Translation Task
Sari Dewi Budiwati | Al Hafiz Akbar Maulana Siagian | Tirana Noor Fatyanosa | Masayoshi Aritsugi
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper presents the participation of DBMS-KU Interpolation system in WMT19 shared task, namely, Kazakh-English language pair. We examine the use of interpolation method using a different language model order. Our Interpolation system combines a direct translation with Russian as a pivot language. We use 3-gram and 5-gram language model orders to perform the language translation in this work. To reduce noise in the pivot translation process, we prune the phrase table of source-pivot and pivot-target. Our experimental results show that our Interpolation system outperforms the Baseline in terms of BLEU-cased score by +0.5 and +0.1 points in Kazakh-English and English-Kazakh, respectively. In particular, using the 5-gram language model order in our system could obtain better BLEU-cased score than utilizing the 3-gram one. Interestingly, we found that by employing the Interpolation system could reduce the perplexity score of English-Kazakh when using 3-gram language model order.