Sarik Ghazarian


pdf bib
DEAM: Dialogue Coherence Evaluation using AMR-based Semantic Manipulations
Sarik Ghazarian | Nuan Wen | Aram Galstyan | Nanyun Peng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic evaluation metrics are essential for the rapid development of open-domain dialogue systems as they facilitate hyper-parameter tuning and comparison between models. Although recently proposed trainable conversation-level metrics have shown encouraging results, the quality of the metrics is strongly dependent on the quality of training data. Prior works mainly resort to heuristic text-level manipulations (e.g. utterances shuffling) to bootstrap incoherent conversations (negative examples) from coherent dialogues (positive examples). Such approaches are insufficient to appropriately reflect the incoherence that occurs in interactions between advanced dialogue models and humans. To tackle this problem, we propose DEAM, a Dialogue coherence Evaluation metric that relies on Abstract Meaning Representation (AMR) to apply semantic-level Manipulations for incoherent (negative) data generation. AMRs naturally facilitate the injection of various types of incoherence sources, such as coreference inconsistency, irrelevancy, contradictions, and decrease engagement, at the semantic level, thus resulting in more natural incoherent samples. Our experiments show that DEAM achieves higher correlations with human judgments compared to baseline methods on several dialog datasets by significant margins. We also show that DEAM can distinguish between coherent and incoherent dialogues generated by baseline manipulations, whereas those baseline models cannot detect incoherent examples generated by DEAM. Our results demonstrate the potential of AMR-based semantic manipulations for natural negative example generation.

pdf bib
What is wrong with you?: Leveraging User Sentiment for Automatic Dialog Evaluation
Sarik Ghazarian | Behnam Hedayatnia | Alexandros Papangelis | Yang Liu | Dilek Hakkani-Tur
Findings of the Association for Computational Linguistics: ACL 2022

Accurate automatic evaluation metrics for open-domain dialogs are in high demand. Existing model-based metrics for system response evaluation are trained on human annotated data, which is cumbersome to collect. In this work, we propose to use information that can be automatically extracted from the next user utterance, such as its sentiment or whether the user explicitly ends the conversation, as a proxy to measure the quality of the previous system response. This allows us to train on a massive set of dialogs with weak supervision, without requiring manual system turn quality annotations. Experiments show that our model is comparable to models trained on human annotated data. Furthermore, our model generalizes across both spoken and written open-domain dialog corpora collected from real and paid users.


pdf bib
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Daniel Khashabi | Arman Cohan | Siamak Shakeri | Pedram Hosseini | Pouya Pezeshkpour | Malihe Alikhani | Moin Aminnaseri | Marzieh Bitaab | Faeze Brahman | Sarik Ghazarian | Mozhdeh Gheini | Arman Kabiri | Rabeeh Karimi Mahabagdi | Omid Memarrast | Ahmadreza Mosallanezhad | Erfan Noury | Shahab Raji | Mohammad Sadegh Rasooli | Sepideh Sadeghi | Erfan Sadeqi Azer | Niloofar Safi Samghabadi | Mahsa Shafaei | Saber Sheybani | Ali Tazarv | Yadollah Yaghoobzadeh
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

pdf bib
Plot-guided Adversarial Example Construction for Evaluating Open-domain Story Generation
Sarik Ghazarian | Zixi Liu | Akash S M | Ralph Weischedel | Aram Galstyan | Nanyun Peng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

With the recent advances of open-domain story generation, the lack of reliable automatic evaluation metrics becomes an increasingly imperative issue that hinders the fast development of story generation. According to conducted researches in this regard, learnable evaluation metrics have promised more accurate assessments by having higher correlations with human judgments. A critical bottleneck of obtaining a reliable learnable evaluation metric is the lack of high-quality training data for classifiers to efficiently distinguish plausible and implausible machine-generated stories. Previous works relied on heuristically manipulated plausible examples to mimic possible system drawbacks such as repetition, contradiction, or irrelevant content in the text level, which can be unnatural and oversimplify the characteristics of implausible machine-generated stories. We propose to tackle these issues by generating a more comprehensive set of implausible stories using plots, which are structured representations of controllable factors used to generate stories. Since these plots are compact and structured, it is easier to manipulate them to generate text with targeted undesirable properties, while at the same time maintain the grammatical correctness and naturalness of the generated sentences. To improve the quality of generated implausible stories, we further apply the adversarial filtering procedure presented by (CITATION) to select a more nuanced set of implausible texts. Experiments show that the evaluation metrics trained on our generated data result in more reliable automatic assessments that correlate remarkably better with human judgments compared to the baselines.

pdf bib
DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation
Sarik Ghazarian | Zixi Liu | Tuhin Chakrabarty | Xuezhe Ma | Aram Galstyan | Nanyun Peng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

Having engaging and informative conversations with users is the utmost goal for open-domain conversational systems. Recent advances in transformer-based language models and their applications to dialogue systems have succeeded to generate fluent and human-like responses. However, they still lack control over the generation process towards producing contentful responses and achieving engaging conversations. To achieve this goal, we present DiSCoL (Dialogue Systems through Coversational Line guided response generation). DiSCoL is an open-domain dialogue system that leverages conversational lines (briefly convlines) as controllable and informative content-planning elements to guide the generation model produce engaging and informative responses. Two primary modules in DiSCoL’s pipeline are conditional generators trained for 1) predicting relevant and informative convlines for dialogue contexts and 2) generating high-quality responses conditioned on the predicted convlines. Users can also change the returned convlines to control the direction of the conversations towards topics that are more interesting for them. Through automatic and human evaluations, we demonstrate the efficiency of the convlines in producing engaging conversations.


pdf bib
Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
Sarik Ghazarian | Johnny Wei | Aram Galstyan | Nanyun Peng
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation

Despite advances in open-domain dialogue systems, automatic evaluation of such systems is still a challenging problem. Traditional reference-based metrics such as BLEU are ineffective because there could be many valid responses for a given context that share no common words with reference responses. A recent work proposed Referenced metric and Unreferenced metric Blended Evaluation Routine (RUBER) to combine a learning-based metric, which predicts relatedness between a generated response and a given query, with reference-based metric; it showed high correlation with human judgments. In this paper, we explore using contextualized word embeddings to compute more accurate relatedness scores, thus better evaluation metrics. Experiments show that our evaluation metrics outperform RUBER, which is trained on static embeddings.