Sashi Novitasari


2020

pdf bib
Cross-Lingual Machine Speech Chain for Javanese, Sundanese, Balinese, and Bataks Speech Recognition and Synthesis
Sashi Novitasari | Andros Tjandra | Sakriani Sakti | Satoshi Nakamura
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

Even though over seven hundred ethnic languages are spoken in Indonesia, the available technology remains limited that could support communication within indigenous communities as well as with people outside the villages. As a result, indigenous communities still face isolation due to cultural barriers; languages continue to disappear. To accelerate communication, speech-to-speech translation (S2ST) technology is one approach that can overcome language barriers. However, S2ST systems require machine translation (MT), speech recognition (ASR), and synthesis (TTS) that rely heavily on supervised training and a broad set of language resources that can be difficult to collect from ethnic communities. Recently, a machine speech chain mechanism was proposed to enable ASR and TTS to assist each other in semi-supervised learning. The framework was initially implemented only for monolingual languages. In this study, we focus on developing speech recognition and synthesis for these Indonesian ethnic languages: Javanese, Sundanese, Balinese, and Bataks. We first separately train ASR and TTS of standard Indonesian in supervised training. We then develop ASR and TTS of ethnic languages by utilizing Indonesian ASR and TTS in a cross-lingual machine speech chain framework with only text or only speech data removing the need for paired speech-text data of those ethnic languages.

2018

pdf bib
Construction of English-French Multimodal Affective Conversational Corpus from TV Dramas
Sashi Novitasari | Quoc Truong Do | Sakriani Sakti | Dessi Lestari | Satoshi Nakamura
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)