Sauleh Eetemadi


2022

pdf bib
Pars-ABSA: a Manually Annotated Aspect-based Sentiment Analysis Benchmark on Farsi Product Reviews
Taha Shangipour ataei | Kamyar Darvishi | Soroush Javdan | Behrouz Minaei-Bidgoli | Sauleh Eetemadi
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Due to the increased availability of online reviews, sentiment analysis witnessed a thriving interest from researchers. Sentiment analysis is a computational treatment of sentiment used to extract and understand the opinions of authors. While many systems were built to predict the sentiment of a document or a sentence, many others provide the necessary detail on various aspects of the entity (i.e., aspect-based sentiment analysis). Most of the available data resources were tailored to English and the other popular European languages. Although Farsi is a language with more than 110 million speakers, to the best of our knowledge, there is a lack of proper public datasets on aspect-based sentiment analysis for Farsi. This paper provides a manually annotated Farsi dataset, Pars-ABSA, annotated and verified by three native Farsi speakers. The dataset consists of 5,114 positive, 3,061 negative and 1,827 neutral data samples from 5,602 unique reviews. Moreover, as a baseline, this paper reports the performance of some aspect-based sentiment analysis methods focusing on transfer learning on Pars-ABSA.

2021

pdf bib
ParsFEVER: a Dataset for Farsi Fact Extraction and Verification
Majid Zarharan | Mahsa Ghaderan | Amin Pourdabiri | Zahra Sayedi | Behrouz Minaei-Bidgoli | Sauleh Eetemadi | Mohammad Taher Pilehvar
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

Training and evaluation of automatic fact extraction and verification techniques require large amounts of annotated data which might not be available for low-resource languages. This paper presents ParsFEVER: the first publicly available Farsi dataset for fact extraction and verification. We adopt the construction procedure of the standard English dataset for the task, i.e., FEVER, and improve it for the case of low-resource languages. Specifically, claims are extracted from sentences that are carefully selected to be more informative. The dataset comprises nearly 23K manually-annotated claims. Over 65% of the claims in ParsFEVER are many-hop (require evidence from multiple sources), making the dataset a challenging benchmark (only 13% of the claims in FEVER are many-hop). Also, despite having a smaller training set (around one-ninth of that in Fever), a model trained on ParsFEVER attains similar downstream performance, indicating the quality of the dataset. We release the dataset and the annotation guidelines at https://github.com/Zarharan/ParsFEVER.

2015

pdf bib
Detecting Translation Direction: A Cross-Domain Study
Sauleh Eetemadi | Kristina Toutanova
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

2014

pdf bib
Asymmetric Features Of Human Generated Translation
Sauleh Eetemadi | Kristina Toutanova
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2013

pdf bib
Dramatically Reducing Training Data Size Through Vocabulary Saturation
William Lewis | Sauleh Eetemadi
Proceedings of the Eighth Workshop on Statistical Machine Translation