Sayar Ghosh Roy
2024
ILCiteR: Evidence-grounded Interpretable Local Citation Recommendation
Sayar Ghosh Roy
|
Jiawei Han
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Existing Machine Learning approaches for local citation recommendation directly map or translate a query, which is typically a claim or an entity mention, to citation-worthy research papers. Within such a formulation, it is challenging to pinpoint why one should cite a specific research paper for a particular query, leading to limited recommendation interpretability. To alleviate this, we introduce the evidence-grounded local citation recommendation task, where the target latent space comprises evidence spans for recommending specific papers. Using a distantly-supervised evidence retrieval and multi-step re-ranking framework, our proposed system, ILCiteR, recommends papers to cite for a query grounded on similar evidence spans extracted from the existing research literature. Unlike past formulations that simply output recommendations, ILCiteR retrieves ranked lists of evidence span and recommended paper pairs. Secondly, previously proposed neural models for citation recommendation require expensive training on massive labeled data, ideally after every significant update to the pool of candidate papers. In contrast, ILCiteR relies solely on distant supervision from a dynamic evidence database and pre-trained Transformer-based Language Models without any model training. We contribute a novel dataset for the evidence-grounded local citation recommendation task and demonstrate the efficacy of our proposed conditional neural rank-ensembling approach for re-ranking evidence spans.
2020
Summaformers @ LaySumm 20, LongSumm 20
Sayar Ghosh Roy
|
Nikhil Pinnaparaju
|
Risubh Jain
|
Manish Gupta
|
Vasudeva Varma
Proceedings of the First Workshop on Scholarly Document Processing
Automatic text summarization has been widely studied as an important task in natural language processing. Traditionally, various feature engineering and machine learning based systems have been proposed for extractive as well as abstractive text summarization. Recently, deep learning based, specifically Transformer-based systems have been immensely popular. Summarization is a cognitively challenging task – extracting summary worthy sentences is laborious, and expressing semantics in brief when doing abstractive summarization is complicated. In this paper, we specifically look at the problem of summarizing scientific research papers from multiple domains. We differentiate between two types of summaries, namely, (a) LaySumm: A very short summary that captures the essence of the research paper in layman terms restricting overtly specific technical jargon and (b) LongSumm: A much longer detailed summary aimed at providing specific insights into various ideas touched upon in the paper. While leveraging latest Transformer-based models, our systems are simple, intuitive and based on how specific paper sections contribute to human summaries of the two types described above. Evaluations against gold standard summaries using ROUGE metrics prove the effectiveness of our approach. On blind test corpora, our system ranks first and third for the LongSumm and LaySumm tasks respectively.
Search