Schema induction involves creating a graph representation depicting how events unfold in a scenario. We present SAGEViz, an intuitive and modular tool that utilizes human-AI collaboration to create and update complex schema graphs efficiently, where multiple annotators (humans and models) can work simultaneously on a schema graph from any domain. The tool consists of two components: (1) a curation component powered by plug-and-play event language models to create and expand event sequences while human annotators validate and enrich the sequences to build complex hierarchical schemas, and (2) an easy-to-use visualization component to visualize schemas at varying levels of hierarchy. Using supervised and few-shot approaches, our event language models can continually predict relevant events starting from a seed event. We conduct a user study and show that users need less effort in terms of interaction steps with SAGEViz to generate schemas of better quality. We also include a video demonstrating the system.
Anticipating future actions in a video is useful for many autonomous and assistive technologies. Prior action anticipation work mostly treat this as a vision modality problem, where the models learn the task information primarily from the video features in the action anticipation datasets. However, knowledge about action sequences can also be obtained from external textual data. In this work, we show how knowledge in pretrained language models can be adapted and distilled into vision based action anticipation models. We show that a simple distillation technique can achieve effective knowledge transfer and provide consistent gains on a strong vision model (Anticipative Vision Transformer) for two action anticipation datasets (3.5% relative gain on EGTEA-GAZE+ and 7.2% relative gain on EPIC-KITCHEN 55), giving a new state-of-the-art result.
The events in a narrative are understood as a coherent whole via the underlying states of their participants. Often, these participant states are not explicitly mentioned, instead left to be inferred by the reader. A model that understands narratives should likewise infer these implicit states, and even reason about the impact of changes to these states on the narrative. To facilitate this goal, we introduce a new crowdsourced English-language, Participant States dataset, PASTA. This dataset contains inferable participant states; a counterfactual perturbation to each state; and the changes to the story that would be necessary if the counterfactual were true. We introduce three state-based reasoning tasks that test for the ability to infer when a state is entailed by a story, to revise a story conditioned on a counterfactual state, and to explain the most likely state change given a revised story. Experiments show that today’s LLMs can reason about states to some degree, but there is large room for improvement, especially in problems requiring access and ability to reason with diverse types of knowledge (e.g., physical, numerical, factual).1
Knowledge about outcomes is critical for complex event understanding but is hard to acquire.We show that by pre-identifying a participant in a complex event, crowdworkers are ableto (1) infer the collective impact of salient events that make up the situation, (2) annotate the volitional engagement of participants in causing the situation, and (3) ground theoutcome of the situation in state changes of the participants. By creating a multi-step interface and a careful quality control strategy, we collect a high quality annotated dataset of8K short newswire narratives and ROCStories with high inter-annotator agreement (0.74-0.96weighted Fleiss Kappa). Our dataset, POQUe (Participant Outcome Questions), enables theexploration and development of models that address multiple aspects of semantic understanding. Experimentally, we show that current language models lag behind human performance in subtle ways through our task formulations that target abstract and specific comprehension of a complex event, its outcome, and a participant’s influence over the event culmination.
Can NLP assist in building formal models for verifying complex systems? We study this challenge in the context of parsing Network File System (NFS) specifications. We define a semantic-dependency problem over SpecIR, a representation language we introduce to model sentences appearing in NFS specification documents (RFCs) as IF-THEN statements, and present an annotated dataset of 1,198 sentences. We develop and evaluate semantic-dependency parsing systems for this problem. Evaluations show that even when using a state-of-the-art language model, there is significant room for improvement, with the best models achieving an F1 score of only 60.5 and 33.3 in the named-entity-recognition and dependency-link-prediction sub-tasks, respectively. We also release additional unlabeled data and other domain-related texts. Experiments show that these additional resources increase the F1 measure when used for simple domain-adaption and transfer-learning-based approaches, suggesting fruitful directions for further research