Scott C. Thomas
1998
Enhancing automatic acquisition of the thematic structure in a large-scale lexicon for Mandarin Chinese
Mari Broman Olsen
|
Bonnie J. Dorr
|
Scott C. Thomas
Proceedings of the Third Conference of the Association for Machine Translation in the Americas: Technical Papers
This paper describes a refinement to our procedure for porting lexical conceptual structure (LCS) into new languages. Specifically we describe a two-step process for creating candidate thematic grids for Mandarin Chinese verbs, using the English verb heading the VP in the subde_nitions to separate senses, and roughly parsing the verb complement structure to match thematic structure templates. We accomplished a substantial reduction in manual effort, without substantive loss. The procedure is part of a larger process of creating a usable lexicon for interlingual machine translation from a large on-line resource with both too much and too little information.
1997
Toward compact monotonically compositional interlingua using lexical aspect
Bonnie J. Dorr
|
Mari Broman Olsen
|
Scott C. Thomas
AMTA/SIG-IL First Workshop on Interlinguas
We describe a theoretical investigation into the semantic space described by our interlingua (IL), which currently has 191 main verb classes divided into 434 subclasses, represented by 237 distinct Lexical Conceptual Structures (LCSs). Using the model of aspect in Olsen (1994; 1997)—monotonic aspectual composition—we have identified 71 aspectually basic subclasses that are associated with one or more of 68 aspectually non-basic classes via some lexical (“type-shifting”) rule (Bresnan, 1982; Pinker, 1984; Levin and Rappaport Hovav, 1995). This allows us to refine the IL and address certain computational and theoretical issues at the same time. (1) From a linguistic viewpoint, the expected benefits include a refinement of the aspectual model in (Olsen, 1994; Olsen, 1997) (which provides necessary but not sufficient conditions for aspectual com- position), and a refinement of the verb classifications in (Levin, 1993); we also expect our approach to eventually produce a systematic definition (in terms of LCSs and compositional operations) of the precise meaning components responsible for Levin's classification. (2) Computationally, the lexicon is made more compact.