Sebastian Gehrmann


pdf bib
Learning Compact Metrics for MT
Amy Pu | Hyung Won Chung | Ankur Parikh | Sebastian Gehrmann | Thibault Sellam
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent developments in machine translation and multilingual text generation have led researchers to adopt trained metrics such as COMET or BLEURT, which treat evaluation as a regression problem and use representations from multilingual pre-trained models such as XLM-RoBERTa or mBERT. Yet studies on related tasks suggest that these models are most efficient when they are large, which is costly and impractical for evaluation. We investigate the trade-off between multilinguality and model capacity with RemBERT, a state-of-the-art multilingual language model, using data from the WMT Metrics Shared Task. We present a series of experiments which show that model size is indeed a bottleneck for cross-lingual transfer, then demonstrate how distillation can help addressing this bottleneck, by leveraging synthetic data generation and transferring knowledge from one teacher to multiple students trained on related languages. Our method yields up to 10.5% improvement over vanilla fine-tuning and reaches 92.6% of RemBERT’s performance using only a third of its parameters.

pdf bib
LMdiff: A Visual Diff Tool to Compare Language Models
Hendrik Strobelt | Benjamin Hoover | Arvind Satyanaryan | Sebastian Gehrmann
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

While different language models are ubiquitous in NLP, it is hard to contrast their outputs and identify which contexts one can handle better than the other. To address this question, we introduce LMdiff, a tool that visually compares probability distributions of two models that differ, e.g., through finetuning, distillation, or simply training with different parameter sizes. LMdiff allows the generation of hypotheses about model behavior by investigating text instances token by token and further assists in choosing these interesting text instances by identifying the most interesting phrases from large corpora. We showcase the applicability of LMdiff for hypothesis generation across multiple case studies. A demo is available at .

pdf bib
Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models
Matthew Finlayson | Aaron Mueller | Sebastian Gehrmann | Stuart Shieber | Tal Linzen | Yonatan Belinkov
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Targeted syntactic evaluations have demonstrated the ability of language models to perform subject-verb agreement given difficult contexts. To elucidate the mechanisms by which the models accomplish this behavior, this study applies causal mediation analysis to pre-trained neural language models. We investigate the magnitude of models’ preferences for grammatical inflections, as well as whether neurons process subject-verb agreement similarly across sentences with different syntactic structures. We uncover similarities and differences across architectures and model sizes—notably, that larger models do not necessarily learn stronger preferences. We also observe two distinct mechanisms for producing subject-verb agreement depending on the syntactic structure of the input sentence. Finally, we find that language models rely on similar sets of neurons when given sentences with similar syntactic structure.

pdf bib
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)
Antoine Bosselut | Esin Durmus | Varun Prashant Gangal | Sebastian Gehrmann | Yacine Jernite | Laura Perez-Beltrachini | Samira Shaikh | Wei Xu
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

pdf bib
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann | Tosin Adewumi | Karmanya Aggarwal | Pawan Sasanka Ammanamanchi | Anuoluwapo Aremu | Antoine Bosselut | Khyathi Raghavi Chandu | Miruna-Adriana Clinciu | Dipanjan Das | Kaustubh Dhole | Wanyu Du | Esin Durmus | Ondřej Dušek | Chris Chinenye Emezue | Varun Gangal | Cristina Garbacea | Tatsunori Hashimoto | Yufang Hou | Yacine Jernite | Harsh Jhamtani | Yangfeng Ji | Shailza Jolly | Mihir Kale | Dhruv Kumar | Faisal Ladhak | Aman Madaan | Mounica Maddela | Khyati Mahajan | Saad Mahamood | Bodhisattwa Prasad Majumder | Pedro Henrique Martins | Angelina McMillan-Major | Simon Mille | Emiel van Miltenburg | Moin Nadeem | Shashi Narayan | Vitaly Nikolaev | Andre Niyongabo Rubungo | Salomey Osei | Ankur Parikh | Laura Perez-Beltrachini | Niranjan Ramesh Rao | Vikas Raunak | Juan Diego Rodriguez | Sashank Santhanam | João Sedoc | Thibault Sellam | Samira Shaikh | Anastasia Shimorina | Marco Antonio Sobrevilla Cabezudo | Hendrik Strobelt | Nishant Subramani | Wei Xu | Diyi Yang | Akhila Yerukola | Jiawei Zhou
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for the 2021 shared task at the associated GEM Workshop.

pdf bib
Reusable Templates and Guides For Documenting Datasets and Models for Natural Language Processing and Generation: A Case Study of the HuggingFace and GEM Data and Model Cards
Angelina McMillan-Major | Salomey Osei | Juan Diego Rodriguez | Pawan Sasanka Ammanamanchi | Sebastian Gehrmann | Yacine Jernite
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

Developing documentation guidelines and easy-to-use templates for datasets and models is a challenging task, especially given the variety of backgrounds, skills, and incentives of the people involved in the building of natural language processing (NLP) tools. Nevertheless, the adoption of standard documentation practices across the field of NLP promotes more accessible and detailed descriptions of NLP datasets and models, while supporting researchers and developers in reflecting on their work. To help with the standardization of documentation, we present two case studies of efforts that aim to develop reusable documentation templates – the HuggingFace data card, a general purpose card for datasets in NLP, and the GEM benchmark data and model cards with a focus on natural language generation. We describe our process for developing these templates, including the identification of relevant stakeholder groups, the definition of a set of guiding principles, the use of existing templates as our foundation, and iterative revisions based on feedback.


pdf bib
Proceedings of the 1st Workshop on Evaluating NLG Evaluation
Shubham Agarwal | Ondřej Dušek | Sebastian Gehrmann | Dimitra Gkatzia | Ioannis Konstas | Emiel Van Miltenburg | Sashank Santhanam
Proceedings of the 1st Workshop on Evaluating NLG Evaluation

pdf bib
Learning to Evaluate Translation Beyond English: BLEURT Submissions to the WMT Metrics 2020 Shared Task
Thibault Sellam | Amy Pu | Hyung Won Chung | Sebastian Gehrmann | Qijun Tan | Markus Freitag | Dipanjan Das | Ankur Parikh
Proceedings of the Fifth Conference on Machine Translation

The quality of machine translation systems has dramatically improved over the last decade, and as a result, evaluation has become an increasingly challenging problem. This paper describes our contribution to the WMT 2020 Metrics Shared Task, the main benchmark for automatic evaluation of translation. We make several submissions based on BLEURT, a previously published which uses transfer learning. We extend the metric beyond English and evaluate it on 14 language pairs for which fine-tuning data is available, as well as 4 “zero-shot” language pairs, for which we have no labelled examples. Additionally, we focus on English to German and demonstrate how to combine BLEURT’s predictions with those of YiSi and use alternative reference translations to enhance the performance. Empirical results show that the models achieve competitive results on the WMT Metrics 2019 Shared Task, indicating their promise for the 2020 edition.

pdf bib
A Corpus for Detecting High-Context Medical Conditions in Intensive Care Patient Notes Focusing on Frequently Readmitted Patients
Edward T. Moseley | Joy T. Wu | Jonathan Welt | John Foote | Patrick D. Tyler | David W. Grant | Eric T. Carlson | Sebastian Gehrmann | Franck Dernoncourt | Leo Anthony Celi
Proceedings of the 12th Language Resources and Evaluation Conference

A crucial step within secondary analysis of electronic health records (EHRs) is to identify the patient cohort under investigation. While EHRs contain medical billing codes that aim to represent the conditions and treatments patients may have, much of the information is only present in the patient notes. Therefore, it is critical to develop robust algorithms to infer patients’ conditions and treatments from their written notes. In this paper, we introduce a dataset for patient phenotyping, a task that is defined as the identification of whether a patient has a given medical condition (also referred to as clinical indication or phenotype) based on their patient note. Nursing Progress Notes and Discharge Summaries from the Intensive Care Unit of a large tertiary care hospital were manually annotated for the presence of several high-context phenotypes relevant to treatment and risk of re-hospitalization. This dataset contains 1102 Discharge Summaries and 1000 Nursing Progress Notes. Each Discharge Summary and Progress Note has been annotated by at least two expert human annotators (one clinical researcher and one resident physician). Annotated phenotypes include treatment non-adherence, chronic pain, advanced/metastatic cancer, as well as 10 other phenotypes. This dataset can be utilized for academic and industrial research in medicine and computer science, particularly within the field of medical natural language processing.

pdf bib
ToTTo: A Controlled Table-To-Text Generation Dataset
Ankur Parikh | Xuezhi Wang | Sebastian Gehrmann | Manaal Faruqui | Bhuwan Dhingra | Diyi Yang | Dipanjan Das
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.

pdf bib
The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
Ian Tenney | James Wexler | Jasmijn Bastings | Tolga Bolukbasi | Andy Coenen | Sebastian Gehrmann | Ellen Jiang | Mahima Pushkarna | Carey Radebaugh | Emily Reif | Ann Yuan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present the Language Interpretability Tool (LIT), an open-source platform for visualization and understanding of NLP models. We focus on core questions about model behavior: Why did my model make this prediction? When does it perform poorly? What happens under a controlled change in the input? LIT integrates local explanations, aggregate analysis, and counterfactual generation into a streamlined, browser-based interface to enable rapid exploration and error analysis. We include case studies for a diverse set of workflows, including exploring counterfactuals for sentiment analysis, measuring gender bias in coreference systems, and exploring local behavior in text generation. LIT supports a wide range of models—including classification, seq2seq, and structured prediction—and is highly extensible through a declarative, framework-agnostic API. LIT is under active development, with code and full documentation available at

pdf bib
exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformer Models
Benjamin Hoover | Hendrik Strobelt | Sebastian Gehrmann
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Large Transformer-based language models can route and reshape complex information via their multi-headed attention mechanism. Although the attention never receives explicit supervision, it can exhibit recognizable patterns following linguistic or positional information. Analyzing the learned representations and attentions is paramount to furthering our understanding of the inner workings of these models. However, analyses have to catch up with the rapid release of new models and the growing diversity of investigation techniques. To support analysis for a wide variety of models, we introduce exBERT, a tool to help humans conduct flexible, interactive investigations and formulate hypotheses for the model-internal reasoning process. exBERT provides insights into the meaning of the contextual representations and attention by matching a human-specified input to similar contexts in large annotated datasets. By aggregating the annotations of the matched contexts, exBERT can quickly replicate findings from literature and extend them to previously not analyzed models.

pdf bib
Interpretability and Analysis in Neural NLP
Yonatan Belinkov | Sebastian Gehrmann | Ellie Pavlick
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

While deep learning has transformed the natural language processing (NLP) field and impacted the larger computational linguistics community, the rise of neural networks is stained by their opaque nature: It is challenging to interpret the inner workings of neural network models, and explicate their behavior. Therefore, in the last few years, an increasingly large body of work has been devoted to the analysis and interpretation of neural network models in NLP. This body of work is so far lacking a common framework and methodology. Moreover, approaching the analysis of modern neural networks can be difficult for newcomers to the field. This tutorial aims to fill this gap and introduce the nascent field of interpretability and analysis of neural networks in NLP. The tutorial will cover the main lines of analysis work, such as structural analyses using probing classifiers, behavioral studies and test suites, and interactive visualizations. We will highlight not only the most commonly applied analysis methods, but also the specific limitations and shortcomings of current approaches, in order to inform participants where to focus future efforts.


pdf bib
Improving Human Text Comprehension through Semi-Markov CRF-based Neural Section Title Generation
Sebastian Gehrmann | Steven Layne | Franck Dernoncourt
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Titles of short sections within long documents support readers by guiding their focus towards relevant passages and by providing anchor-points that help to understand the progression of the document. The positive effects of section titles are even more pronounced when measured on readers with less developed reading abilities, for example in communities with limited labeled text resources. We, therefore, aim to develop techniques to generate section titles in low-resource environments. In particular, we present an extractive pipeline for section title generation by first selecting the most salient sentence and then applying deletion-based compression. Our compression approach is based on a Semi-Markov Conditional Random Field that leverages unsupervised word-representations such as ELMo or BERT, eliminating the need for a complex encoder-decoder architecture. The results show that this approach leads to competitive performance with sequence-to-sequence models with high resources, while strongly outperforming it with low resources. In a human-subject study across subjects with varying reading abilities, we find that our section titles improve the speed of completing comprehension tasks while retaining similar accuracy.

pdf bib
LSTM Networks Can Perform Dynamic Counting
Mirac Suzgun | Yonatan Belinkov | Stuart Shieber | Sebastian Gehrmann
Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges

In this paper, we systematically assess the ability of standard recurrent networks to perform dynamic counting and to encode hierarchical representations. All the neural models in our experiments are designed to be small-sized networks both to prevent them from memorizing the training sets and to visualize and interpret their behaviour at test time. Our results demonstrate that the Long Short-Term Memory (LSTM) networks can learn to recognize the well-balanced parenthesis language (Dyck-1) and the shuffles of multiple Dyck-1 languages, each defined over different parenthesis-pairs, by emulating simple real-time k-counter machines. To the best of our knowledge, this work is the first study to introduce the shuffle languages to analyze the computational power of neural networks. We also show that a single-layer LSTM with only one hidden unit is practically sufficient for recognizing the Dyck-1 language. However, none of our recurrent networks was able to yield a good performance on the Dyck-2 language learning task, which requires a model to have a stack-like mechanism for recognition.

pdf bib
Margin Call: an Accessible Web-based Text Viewer with Generated Paragraph Summaries in the Margin
Naba Rizvi | Sebastian Gehrmann | Lidan Wang | Franck Dernoncourt
Proceedings of the 12th International Conference on Natural Language Generation

We present Margin Call, a web-based text viewer that automatically generates short summaries for each paragraph of the text and displays the summaries in the margin of the text next to the corresponding paragraph. On the back-end, the summarizer first identifies the most important sentence for each paragraph in the text file uploaded by the user. The selected sentence is then automatically compressed to produce the short summary. The resulting summary is a few words long. The displayed summaries can help the user understand and retrieve information faster from the text, while increasing the retention of information.

pdf bib
Generating Abstractive Summaries with Finetuned Language Models
Sebastian Gehrmann | Zachary Ziegler | Alexander Rush
Proceedings of the 12th International Conference on Natural Language Generation

Neural abstractive document summarization is commonly approached by models that exhibit a mostly extractive behavior. This behavior is facilitated by a copy-attention which allows models to copy words from a source document. While models in the mostly extractive news summarization domain benefit from this inductive bias, they commonly fail to paraphrase or compress information from the source document. Recent advances in transfer-learning from large pretrained language models give rise to alternative approaches that do not rely on copy-attention and instead learn to generate concise and abstractive summaries. In this paper, as part of the TL;DR challenge, we compare the abstractiveness of summaries from different summarization approaches and show that transfer-learning can be efficiently utilized without any changes to the model architecture. We demonstrate that the approach leads to a higher level of abstraction for a similar performance on the TL;DR challenge tasks, enabling true natural language compression.

pdf bib
GLTR: Statistical Detection and Visualization of Generated Text
Sebastian Gehrmann | Hendrik Strobelt | Alexander Rush
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

The rapid improvement of language models has raised the specter of abuse of text generation systems. This progress motivates the development of simple methods for detecting generated text that can be used by non-experts. In this work, we introduce GLTR, a tool to support humans in detecting whether a text was generated by a model. GLTR applies a suite of baseline statistical methods that can detect generation artifacts across multiple sampling schemes. In a human-subjects study, we show that the annotation scheme provided by GLTR improves the human detection-rate of fake text from 54% to 72% without any prior training. GLTR is open-source and publicly deployed, and has already been widely used to detect generated outputs.


pdf bib
Debugging Sequence-to-Sequence Models with Seq2Seq-Vis
Hendrik Strobelt | Sebastian Gehrmann | Michael Behrisch | Adam Perer | Hanspeter Pfister | Alexander Rush
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Neural attention-based sequence-to-sequence models (seq2seq) (Sutskever et al., 2014; Bahdanau et al., 2014) have proven to be accurate and robust for many sequence prediction tasks. They have become the standard approach for automatic translation of text, at the cost of increased model complexity and uncertainty. End-to-end trained neural models act as a black box, which makes it difficult to examine model decisions and attribute errors to a specific part of a model. The highly connected and high-dimensional internal representations pose a challenge for analysis and visualization tools. The development of methods to understand seq2seq predictions is crucial for systems in production settings, as mistakes involving language are often very apparent to human readers. For instance, a widely publicized incident resulted from a translation system mistakenly translating “good morning” into “attack them” leading to a wrongful arrest (Hern, 2017).

pdf bib
End-to-End Content and Plan Selection for Data-to-Text Generation
Sebastian Gehrmann | Falcon Dai | Henry Elder | Alexander Rush
Proceedings of the 11th International Conference on Natural Language Generation

Learning to generate fluent natural language from structured data with neural networks has become an common approach for NLG. This problem can be challenging when the form of the structured data varies between examples. This paper presents a survey of several extensions to sequence-to-sequence models to account for the latent content selection process, particularly variants of copy attention and coverage decoding. We further propose a training method based on diverse ensembling to encourage models to learn distinct sentence templates during training. An empirical evaluation of these techniques shows an increase in the quality of generated text across five automated metrics, as well as human evaluation.

pdf bib
E2E NLG Challenge Submission: Towards Controllable Generation of Diverse Natural Language
Henry Elder | Sebastian Gehrmann | Alexander O’Connor | Qun Liu
Proceedings of the 11th International Conference on Natural Language Generation

In natural language generation (NLG), the task is to generate utterances from a more abstract input, such as structured data. An added challenge is to generate utterances that contain an accurate representation of the input, while reflecting the fluency and variety of human-generated text. In this paper, we report experiments with NLG models that can be used in task oriented dialogue systems. We explore the use of additional input to the model to encourage diversity and control of outputs. While our submission does not rank highly using automated metrics, qualitative investigation of generated utterances suggests the use of additional information in neural network NLG systems to be a promising research direction.

pdf bib
Bottom-Up Abstractive Summarization
Sebastian Gehrmann | Yuntian Deng | Alexander Rush
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Neural summarization produces outputs that are fluent and readable, but which can be poor at content selection, for instance often copying full sentences from the source document. This work explores the use of data-efficient content selectors to over-determine phrases in a source document that should be part of the summary. We use this selector as a bottom-up attention step to constrain the model to likely phrases. We show that this approach improves the ability to compress text, while still generating fluent summaries. This two-step process is both simpler and higher performing than other end-to-end content selection models, leading to significant improvements on ROUGE for both the CNN-DM and NYT corpus. Furthermore, the content selector can be trained with as little as 1,000 sentences making it easy to transfer a trained summarizer to a new domain.