Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, through a collaborative movement, we introduce SEACrowd, a comprehensive resource center that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in Southeast Asia.
We investigate a surprising limitation of LLMs: their inability to consistently generate text in a user’s desired language. We create the Language Confusion Benchmark (LCB) to evaluate such failures, covering 15 typologically diverse languages with existing and newly-created English and multilingual prompts. We evaluate a range of LLMs on monolingual and cross-lingual generation reflecting practical use cases, finding that Llama Instruct and Mistral models exhibit high degrees of language confusion and even the strongest models fail to consistently respond in the correct language. We observe that base and English-centric instruct models are more prone to language confusion, which is aggravated by complex prompts and high sampling temperatures. We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning. We release our language confusion benchmark, which serves as a first layer of efficient, scalable multilingual evaluation.
The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs). To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying how the source of synthetic data shapes models’ internal biases, calibration and preferences, and their generations’ textual attributes, providing one of the most comprehensive studies to-date. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear “neutral” which invites the question: can we explicitly steer the distilled data towards desired properties? We demonstrate how such active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes in both directions, e.g. increasing lexical diversity or reducing toxicity. Overall, our study broadens the understanding of the implicit biases inherited by LLMs and explores how we can leverage them to positive effect.
Quantization techniques are widely used to improve inference speed and deployment of large language models. While a wide body of work examines the impact of quantization on LLMs in English, none have evaluated across languages. We conduct a thorough analysis of quantized multilingual LLMs, focusing on performance across languages and at varying scales. We use automatic benchmarks, LLM-as-a-Judge, and human evaluation, finding that (1) harmful effects of quantization are apparent in human evaluation, which automatic metrics severely underestimate: a 1.7% average drop in Japanese across automatic tasks corresponds to a 16.0% drop reported by human evaluators on realistic prompts; (2) languages are disparately affected by quantization, with non-Latin script languages impacted worst; and (3) challenging tasks like mathematical reasoning degrade fastest. As the ability to serve low-compute models is critical for wide global adoption of NLP technologies, our results urge consideration of multilingual performance as a key evaluation criterion for efficient models.
Despite remarkable advancements in few-shot generalization in natural language processing, most models are developed and evaluated primarily in English. To establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer, we introduce a new benchmark, called BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format and provides a fixed set of few-shot examples and instructions. Using BUFFET, we perform thorough evaluations of ten state-of-the-art multilingual large language models with different transfer methods, namely in-context learning and fine-tuning. Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer. Strong multilingual pre-trained or instruction-tuned models such as BLOOM or ChatGPT often lag behind much smaller mT5-base models given the same number of few-shot samples, particularly in low-resource languages. Our analysis suggests avenues for future research in few-shot cross-lingual transfer.
Parameter-efficient fine-tuning (PEFT) using labeled task data can significantly improve the performance of large language models (LLMs) on the downstream task. However, there are 7000 languages in the world and many of these languages lack labeled data for real-world language generation tasks. In this paper, we propose to improve zero-shot cross-lingual transfer by composing expert modules trained separately on language or task data. Our method composes language and task PEFT adapters via element-wise arithmetic operations to leverage unlabeled data and English labeled data. We extend our approach to cases where labeled data from more languages is available and propose to arithmetically compose PEFT adapters trained on languages related to the target. Empirical results on summarization demonstrate that our method is a strategy that obtains consistent gains using minimal training of PEFT parameters.
Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the fine-tuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and augmenting existing datasets across 114 languages. In total, we contribute three key resources: we develop and open-source the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as an important framework for future research collaborations that aim to bridge gaps in resources.
Contrary to common belief, there are rich and diverse data sources available for many thousands of languages, which can be used to develop technologies for these languages. In this paper, we provide an overview of some of the major online data sources, the types of data that they provide access to, potential applications of this data, and the number of languages that they cover. Even this covers only a small fraction of the data that exists; for example, printed books are published in many languages but few online aggregators exist.
We present the first Africentric SemEval Shared task, Sentiment Analysis for African Languages (AfriSenti-SemEval) - The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023. AfriSenti-SemEval is a sentiment classification challenge in 14 African languages: Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yorb (Muhammad et al., 2023), using data labeled with 3 sentiment classes. We present three subtasks: (1) Task A: monolingual classification, which received 44 submissions; (2) Task B: multilingual classification, which received 32 submissions; and (3) Task C: zero-shot classification, which received 34 submissions. The best performance for tasks A and B was achieved by NLNDE team with 71.31 and 75.06 weighted F1, respectively. UCAS-IIE-NLP achieved the best average score for task C with 58.15 weighted F1. We describe the various approaches adopted by the top 10 systems and their approaches.
A challenge towards developing NLP systems for the world’s languages is understanding how they generalize to typological differences relevant for real-world applications. To this end, we propose M2C, a morphologically-aware framework for behavioral testing of NLP models. We use M2C to generate tests that probe models’ behavior in light of specific linguistic features in 12 typologically diverse languages. We evaluate state-of-the-art language models on the generated tests. While models excel at most tests in English, we highlight generalization failures to specific typological characteristics such as temporal expressions in Swahili and compounding possessives in Finish. Our findings motivate the development of models that address these blind spots.
In order for NLP technology to be widely applicable, fair, and useful, it needs to serve a diverse set of speakers across the world’s languages, be equitable, i.e., not unduly biased towards any particular language, and be inclusive of all users, particularly in low-resource settings where compute constraints are common. In this paper, we propose an evaluation paradigm that assesses NLP technologies across all three dimensions. While diversity and inclusion have received attention in recent literature, equity is currently unexplored. We propose to address this gap using the Gini coefficient, a well-established metric used for estimating societal wealth inequality. Using our paradigm, we highlight the distressed state of current technologies for Indian (IN) languages (a linguistically large and diverse set, with a varied speaker population), across all three dimensions. To improve upon these metrics, we demonstrate the importance of region-specific choices in model building and dataset creation, and more importantly, propose a novel, generalisable approach to optimal resource allocation during fine-tuning. Finally, we discuss steps to mitigate these biases and encourage the community to employ multi-faceted evaluation when building linguistically diverse and equitable technologies.
We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments.NusaCrowd’s data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.
Existing data-to-text generation datasets are mostly limited to English. To address this lack of data, we create Table-to-Text in African languages (TaTA), the first large multilingual table-to-text dataset with a focus on African languages. We created TaTA by transcribing figures and accompanying text in bilingual reports by the Demographic and Health Surveys Program, followed by professional translation to make the dataset fully parallel. TaTA includes 8,700 examples in nine languages including four African languages (Hausa, Igbo, Swahili, and Yorùbá) and a zero-shot test language (Russian). We additionally release screenshots of the original figures for future research on multilingual multi-modal approaches. Through an in-depth human evaluation, we show that TaTA is challenging for current models and that less than half the outputs from an mT5-XXL-based model are understandable and attributable to the source data. Our results highlight a) the need for validating metrics; and b) the importance of domain-specific metrics.
Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) — languages for which NLP research is particularly far behind in meeting user needs — it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks — tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models.
Multilingual sequence-to-sequence models perform poorly with increased language coverage and fail to consistently generate text in the correct target language in few-shot settings. To address these challenges, we propose mmT5, a modular multilingual sequence-to-sequence model. mmT5 utilizes language-specific modules during pre-training, which disentangle language-specific information from language-agnostic information. We identify representation drift during fine-tuning as a key limitation of modular generative models and develop strategies that enable effective zero-shot transfer. Our model outperforms mT5 at the same parameter sizes by a large margin on representative natural language understanding and generation tasks in 40+ languages. Compared to mT5, mmT5 raises the rate of generating text in the correct language under zero-shot settings from 7% to 99%, thereby greatly alleviating the source language hallucination problem.
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages.
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
Trustworthy answer content is abundant in many high-resource languages and is instantly accessible through question answering systems — yet this content can be hard to access for those that do not speak these languages. The leap forward in cross-lingual modeling quality offered by generative language models offers much promise, yet their raw generations often fall short in factuality. To improve trustworthiness in these systems, a promising direction is to attribute the answer to a retrieved source, possibly in a content-rich language different from the query. Our work is the first to study attribution for cross-lingual question answering. First, we collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system. To our surprise, we find that a substantial portion of the answers is not attributable to any retrieved passages (up to 50% of answers exactly matching a gold reference) despite the system being able to attend directly to the retrieved text. Second, to address this poor attribution level, we experiment with a wide range of attribution detection techniques. We find that Natural Language Inference models and PaLM 2 fine-tuned on a very small amount of attribution data can accurately detect attribution. With these models, we improve the attribution level of a cross-lingual QA system. Overall, we show that current academic generative cross-lingual QA systems have substantial shortcomings in attribution and we build tooling to mitigate these issues.
Africa is home to over 2,000 languages from over six language families and has the highest linguistic diversity among all continents. This includes 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial in enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, a sentiment analysis benchmark that contains a total of >110,000 tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba) from four language families. The tweets were annotated by native speakers and used in the AfriSenti-SemEval shared task (with over 200 participants, see website: https://afrisenti-semeval.github.io). We describe the data collection methodology, annotation process, and the challenges we dealt with when curating each dataset. We further report baseline experiments conducted on the AfriSenti datasets and discuss their usefulness.
We introduce Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models. By integrating 10 diverse adapter methods into a unified interface, Adapters offers ease of use and flexible configuration. Our library allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups. We demonstrate the library’s efficacy by evaluating its performance against full fine-tuning on various NLP tasks. Adapters provides a powerful tool for addressing the challenges of conventional fine-tuning paradigms and promoting more efficient and modular transfer learning. The library is available via https://adapterhub.ml/adapters.
Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes sentiment and machine translation datasets, and bilingual lexicons. We provide extensive analyses and describe challenges for creating such resources. We hope this work can spark NLP research on Indonesian and other underrepresented languages.
Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.
The availability of large, high-quality datasets has been a major driver of recent progress in question answering (QA). Such annotated datasets, however, are difficult and costly to collect, and rarely exist in languages other than English, rendering QA technology inaccessible to underrepresented languages. An alternative to building large monolingual training datasets is to leverage pre-trained language models (PLMs) under a few-shot learning setting. Our approach, QAmeleon, uses a PLM to automatically generate multilingual data upon which QA models are fine-tuned, thus avoiding costly annotation. Prompt tuning the PLM with only five examples per language delivers accuracy superior to translation-based baselines; it bridges nearly 60% of the gap between an English-only baseline and a fully-supervised upper bound fine-tuned on almost 50,000 hand-labeled examples; and consistently leads to improvements compared to directly fine-tuning a QA model on labeled examples in low resource settings. Experiments on the TyDiqa-GoldP and MLQA benchmarks show that few-shot prompt tuning for data synthesis scales across languages and is a viable alternative to large-scale annotation.1
The few-shot natural language understanding (NLU) task has attracted much recent attention. However, prior methods have been evaluated under a disparate set of protocols, which hinders fair comparison and measuring the progress of the field. To address this issue, we introduce an evaluation framework that improves previous evaluation procedures in three key aspects, i.e., test performance, dev-test correlation, and stability. Under this new evaluation framework, we re-evaluate several state-of-the-art few-shot methods for NLU tasks. Our framework reveals new insights: (1) both the absolute performance and relative gap of the methods were not accurately estimated in prior literature; (2) no single method dominates most tasks with consistent performance; (3) improvements of some methods diminish with a larger pretrained model; and (4) gains from different methods are often complementary and the best combined model performs close to a strong fully-supervised baseline. We open-source our toolkit, FewNLU, that implements our evaluation framework along with a number of state-of-the-art methods.
The performance of multilingual pretrained models is highly dependent on the availability of monolingual or parallel text present in a target language. Thus, the majority of the world’s languages cannot benefit from recent progress in NLP as they have no or limited textual data. To expand possibilities of using NLP technology in these under-represented languages, we systematically study strategies that relax the reliance on conventional language resources through the use of bilingual lexicons, an alternative resource with much better language coverage. We analyze different strategies to synthesize textual or labeled data using lexicons, and how this data can be combined with monolingual or parallel text when available. For 19 under-represented languages across 3 tasks, our methods lead to consistent improvements of up to 5 and 15 points with and without extra monolingual text respectively. Overall, our study highlights how NLP methods can be adapted to thousands more languages that are under-served by current technology.
NLP research is impeded by a lack of resources and awareness of the challenges presented by underrepresented languages and dialects. Focusing on the languages spoken in Indonesia, the second most linguistically diverse and the fourth most populous nation of the world, we provide an overview of the current state of NLP research for Indonesia’s 700+ languages. We highlight challenges in Indonesian NLP and how these affect the performance of current NLP systems. Finally, we provide general recommendations to help develop NLP technology not only for languages of Indonesia but also other underrepresented languages.
State-of-the-art pre-trained language models have been shown to memorise facts and perform well with limited amounts of training data. To gain a better understanding of how these models learn, we study their generalisation and memorisation capabilities in noisy and low-resource scenarios. We find that the training of these models is almost unaffected by label noise and that it is possible to reach near-optimal results even on extremely noisy datasets. However, our experiments also show that they mainly learn from high-frequency patterns and largely fail when tested on low-resource tasks such as few-shot learning and rare entity recognition. To mitigate such limitations, we propose an extension based on prototypical networks that improves performance in low-resource named entity recognition tasks.
African languages are spoken by over a billion people, but they are under-represented in NLP research and development. Multiple challenges exist, including the limited availability of annotated training and evaluation datasets as well as the lack of understanding of which settings, languages, and recently proposed methods like cross-lingual transfer will be effective. In this paper, we aim to move towards solutions for these challenges, focusing on the task of named entity recognition (NER). We present the creation of the largest to-date human-annotated NER dataset for 20 African languages. We study the behaviour of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, empirically demonstrating that the choice of source transfer language significantly affects performance. While much previous work defaults to using English as the source language, our results show that choosing the best transfer language improves zero-shot F1 scores by an average of 14% over 20 languages as compared to using English.
Massively multilingual models are promising for transfer learning across tasks and languages. However, existing methods are unable to fully leverage training data when it is available in different task-language combinations. To exploit such heterogeneous supervision, we propose Hyper-X, a single hypernetwork that unifies multi-task and multilingual learning with efficient adaptation. It generates weights for adapter modules conditioned on both tasks and language embeddings. By learning to combine task and language-specific knowledge, our model enables zero-shot transfer for unseen languages and task-language combinations. Our experiments on a diverse set of languages demonstrate that Hyper-X achieves the best or competitive gain when a mixture of multiple resources is available, while on par with strong baseline in the standard scenario. Hyper-X is also considerably more efficient in terms of parameters and resources compared to methods that train separate adapters. Finally, Hyper-X consistently produces strong results in few-shot scenarios for new languages, showing the versatility of our approach beyond zero-shot transfer.
State-of-the-art language models in NLP perform best when fine-tuned even on small datasets, but due to their increasing size, fine-tuning and downstream usage have become extremely compute-intensive. Being able to efficiently and effectively fine-tune the largest pre-trained models is thus key in order to reap the benefits of the latest advances in NLP. In this tutorial, we provide a comprehensive overview of parameter-efficient fine-tuning methods. We highlight their similarities and differences by presenting them in a unified view. We explore the benefits and usage scenarios of a neglected property of such parameter-efficient models—modularity—such as composition of modules to deal with previously unseen data conditions. We finally highlight how both properties——parameter efficiency and modularity——can be useful in the real-world setting of adapting pre-trained models to under-represented languages and domains with scarce annotated data for several downstream applications.
The prototypical NLP experiment trains a standard architecture on labeled English data and optimizes for accuracy, without accounting for other dimensions such as fairness, interpretability, or computational efficiency. We show through a manual classification of recent NLP research papers that this is indeed the case and refer to it as the square one experimental setup. We observe that NLP research often goes beyond the square one setup, e.g, focusing not only on accuracy, but also on fairness or interpretability, but typically only along a single dimension. Most work targeting multilinguality, for example, considers only accuracy; most work on fairness or interpretability considers only English; and so on. Such one-dimensionality of most research means we are only exploring a fraction of the NLP research search space. We provide historical and recent examples of how the square one bias has led researchers to draw false conclusions or make unwise choices, point to promising yet unexplored directions on the research manifold, and make practical recommendations to enable more multi-dimensional research. We open-source the results of our annotations to enable further analysis.
Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria—Hausa, Igbo, Nigerian-Pidgin, and Yorùbá—consisting of around 30,000 annotated tweets per language, including a significant fraction of code-mixed tweets. We propose text collection, filtering, processing and labeling methods that enable us to create datasets for these low-resource languages. We evaluate a range of pre-trained models and transfer strategies on the dataset. We find that language-specific models and language-adaptive fine-tuning generally perform best. We release the datasets, trained models, sentiment lexicons, and code to incentivize research on sentiment analysis in under-represented languages.
We describe an open-source dataset providing metadata for about 2,800 language varieties used in the world today. Specifically, the dataset provides the attested writing system(s) for each of these 2,800+ varieties, as well as an estimated speaker count for each variety. This dataset was developed through internal research and has been used for analyses around language technologies. This is the largest publicly-available, machine-readable resource with writing system and speaker information for the world’s languages. We analyze the distribution of languages and writing systems in our data and compare it to their representation in current NLP. We hope the availability of this data will catalyze research in under-represented languages.
State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between the layers of a pretrained language model. However, such modules are trained separately for each task and thus do not enable sharing information across tasks. In this paper, we show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks, which condition on task, adapter position, and layer id in a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate substantial performance improvements in few-shot domain generalization across a variety of tasks. Our code is publicly available in https://github.com/rabeehk/hyperformer.
In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model’s vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language.
We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition (NER) in ten African languages. We detail the characteristics of these languages to help researchers and practitioners better understand the challenges they pose for NER tasks. We analyze our datasets and conduct an extensive empirical evaluation of state- of-the-art methods across both supervised and transfer learning settings. Finally, we release the data, code, and models to inspire future research on African NLP.1
Multilingual pretrained representations generally rely on subword segmentation algorithms to create a shared multilingual vocabulary. However, standard heuristic algorithms often lead to sub-optimal segmentation, especially for languages with limited amounts of data. In this paper, we take two major steps towards alleviating this problem. First, we demonstrate empirically that applying existing subword regularization methods (Kudo, 2018; Provilkov et al., 2020) during fine-tuning of pre-trained multilingual representations improves the effectiveness of cross-lingual transfer. Second, to take full advantage of different possible input segmentations, we propose Multi-view Subword Regularization (MVR), a method that enforces the consistency of predictors between using inputs tokenized by the standard and probabilistic segmentations. Results on the XTREME multilingual benchmark (Hu et al., 2020) show that MVR brings consistent improvements of up to 2.5 points over using standard segmentation algorithms.
Adapters are light-weight modules that allow parameter-efficient fine-tuning of pretrained models. Specialized language and task adapters have recently been proposed to facilitate cross-lingual transfer of multilingual pretrained models (Pfeiffer et al., 2020b). However, this approach requires training a separate language adapter for every language one wishes to support, which can be impractical for languages with limited data. An intuitive solution is to use a related language adapter for the new language variety, but we observe that this solution can lead to sub-optimal performance. In this paper, we aim to improve the robustness of language adapters to uncovered languages without training new adapters. We find that ensembling multiple existing language adapters makes the fine-tuned model significantly more robust to other language varieties not included in these adapters. Building upon this observation, we propose Entropy Minimized Ensemble of Adapters (EMEA), a method that optimizes the ensemble weights of the pretrained language adapters for each test sentence by minimizing the entropy of its predictions. Experiments on three diverse groups of language varieties show that our method leads to significant improvements on both named entity recognition and part-of-speech tagging across all languages.
Adapter modules have emerged as a general parameter-efficient means to specialize a pretrained encoder to new domains. Massively multilingual transformers (MMTs) have particularly benefited from additional training of language-specific adapters. However, this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets. In this work, we propose MAD-G (Multilingual ADapter Generation), which contextually generates language adapters from language representations based on typological features. In contrast to prior work, our time- and space-efficient MAD-G approach enables (1) sharing of linguistic knowledge across languages and (2) zero-shot inference by generating language adapters for unseen languages. We thoroughly evaluate MAD-G in zero-shot cross-lingual transfer on part-of-speech tagging, dependency parsing, and named entity recognition. While offering (1) improved fine-tuning efficiency (by a factor of around 50 in our experiments), (2) a smaller parameter budget, and (3) increased language coverage, MAD-G remains competitive with more expensive methods for language-specific adapter training across the board. Moreover, it offers substantial benefits for low-resource languages, particularly on the NER task in low-resource African languages. Finally, we demonstrate that MAD-G’s transfer performance can be further improved via: (i) multi-source training, i.e., by generating and combining adapters of multiple languages with available task-specific training data; and (ii) by further fine-tuning generated MAD-G adapters for languages with monolingual data.
Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource—yet widely spoken—languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks—despite using only one-fifth the parameters of a larger multilingual model, mBART-large (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, localized languages to achieve more efficient learning and faster inference at very low-resource languages like Javanese and Sundanese.
Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model’s embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT’s and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model.
Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models.
Question answering (QA) is one of the most challenging and impactful tasks in natural language processing. Most research in QA, however, has focused on the open-domain or monolingual setting while most real-world applications deal with specific domains or languages. In this tutorial, we attempt to bridge this gap. Firstly, we introduce standard benchmarks in multi-domain and multilingual QA. In both scenarios, we discuss state-of-the-art approaches that achieve impressive performance, ranging from zero-shot transfer learning to out-of-the-box training with open-domain QA systems. Finally, we will present open research problems that this new research agenda poses such as multi-task learning, cross-lingual transfer learning, domain adaptation and training large scale pre-trained multilingual language models.
We propose a novel morphologically aware probability model for bilingual lexicon induction, which jointly models lexeme translation and inflectional morphology in a structured way. Our model exploits the basic linguistic intuition that the lexeme is the key lexical unit of meaning, while inflectional morphology provides additional syntactic information. This approach leads to substantial performance improvements—19% average improvement in accuracy across 6 language pairs over the state of the art in the supervised setting and 16% in the weakly supervised setting. As another contribution, we highlight issues associated with modern BLI that stem from ignoring inflectional morphology, and propose three suggestions for improving the task.
State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators.
We review motivations, definition, approaches, and methodology for unsupervised cross-lingual learning and call for a more rigorous position in each of them. An existing rationale for such research is based on the lack of parallel data for many of the world’s languages. However, we argue that a scenario without any parallel data and abundant monolingual data is unrealistic in practice. We also discuss different training signals that have been used in previous work, which depart from the pure unsupervised setting. We then describe common methodological issues in tuning and evaluation of unsupervised cross-lingual models and present best practices. Finally, we provide a unified outlook for different types of research in this area (i.e., cross-lingual word embeddings, deep multilingual pretraining, and unsupervised machine translation) and argue for comparable evaluation of these models.
Existing algorithms for aligning cross-lingual word vector spaces assume that vector spaces are approximately isomorphic. As a result, they perform poorly or fail completely on non-isomorphic spaces. Such non-isomorphism has been hypothesised to result from typological differences between languages. In this work, we ask whether non-isomorphism is also crucially a sign of degenerate word vector spaces. We present a series of experiments across diverse languages which show that variance in performance across language pairs is not only due to typological differences, but can mostly be attributed to the size of the monolingual resources available, and to the properties and duration of monolingual training (e.g. “under-training”).
The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.
Tracking progress in machine learning has become increasingly difficult with the recent explosion in the number of papers. In this paper, we present AxCell, an automatic machine learning pipeline for extracting results from papers. AxCell uses several novel components, including a table segmentation subtask, to learn relevant structural knowledge that aids extraction. When compared with existing methods, our approach significantly improves the state of the art for results extraction. We also release a structured, annotated dataset for training models for results extraction, and a dataset for evaluating the performance of models on this task. Lastly, we show the viability of our approach enables it to be used for semi-automated results extraction in production, suggesting our improvements make this task practically viable for the first time. Code is available on GitHub.
The current modus operandi in NLP involves downloading and fine-tuning pre-trained models consisting of millions or billions of parameters. Storing and sharing such large trained models is expensive, slow, and time-consuming, which impedes progress towards more general and versatile NLP methods that learn from and for many tasks. Adapters—small learnt bottleneck layers inserted within each layer of a pre-trained model— ameliorate this issue by avoiding full fine-tuning of the entire model. However, sharing and integrating adapter layers is not straightforward. We propose AdapterHub, a framework that allows dynamic “stiching-in” of pre-trained adapters for different tasks and languages. The framework, built on top of the popular HuggingFace Transformers library, enables extremely easy and quick adaptations of state-of-the-art pre-trained models (e.g., BERT, RoBERTa, XLM-R) across tasks and languages. Downloading, sharing, and training adapters is as seamless as possible using minimal changes to the training scripts and a specialized infrastructure. Our framework enables scalable and easy access to sharing of task-specific models, particularly in low-resource scenarios. AdapterHub includes all recent adapter architectures and can be found at AdapterHub.ml
Cross-lingual word embeddings (CLEs) facilitate cross-lingual transfer of NLP models. Despite their ubiquitous downstream usage, increasingly popular projection-based CLE models are almost exclusively evaluated on bilingual lexicon induction (BLI). Even the BLI evaluations vary greatly, hindering our ability to correctly interpret performance and properties of different CLE models. In this work, we take the first step towards a comprehensive evaluation of CLE models: we thoroughly evaluate both supervised and unsupervised CLE models, for a large number of language pairs, on BLI and three downstream tasks, providing new insights concerning the ability of cutting-edge CLE models to support cross-lingual NLP. We empirically demonstrate that the performance of CLE models largely depends on the task at hand and that optimizing CLE models for BLI may hurt downstream performance. We indicate the most robust supervised and unsupervised CLE models and emphasize the need to reassess simple baselines, which still display competitive performance across the board. We hope our work catalyzes further research on CLE evaluation and model analysis.
In this tutorial, we provide a comprehensive survey of the exciting recent work on cutting-edge weakly-supervised and unsupervised cross-lingual word representations. After providing a brief history of supervised cross-lingual word representations, we focus on: 1) how to induce weakly-supervised and unsupervised cross-lingual word representations in truly resource-poor settings where bilingual supervision cannot be guaranteed; 2) critical examinations of different training conditions and requirements under which unsupervised algorithms can and cannot work effectively; 3) more robust methods for distant language pairs that can mitigate instability issues and low performance for distant language pairs; 4) how to comprehensively evaluate such representations; and 5) diverse applications that benefit from cross-lingual word representations (e.g., MT, dialogue, cross-lingual sequence labeling and structured prediction applications, cross-lingual IR).
The classic supervised machine learning paradigm is based on learning in isolation, a single predictive model for a task using a single dataset. This approach requires a large number of training examples and performs best for well-defined and narrow tasks. Transfer learning refers to a set of methods that extend this approach by leveraging data from additional domains or tasks to train a model with better generalization properties. Over the last two years, the field of Natural Language Processing (NLP) has witnessed the emergence of several transfer learning methods and architectures which significantly improved upon the state-of-the-art on a wide range of NLP tasks. These improvements together with the wide availability and ease of integration of these methods are reminiscent of the factors that led to the success of pretrained word embeddings and ImageNet pretraining in computer vision, and indicate that these methods will likely become a common tool in the NLP landscape as well as an important research direction. We will present an overview of modern transfer learning methods in NLP, how models are pre-trained, what information the representations they learn capture, and review examples and case studies on how these models can be integrated and adapted in downstream NLP tasks.
Human translators routinely have to translate rare inflections of words – due to the Zipfian distribution of words in a language. When translating from Spanish, a good translator would have no problem identifying the proper translation of a statistically rare inflection such as habláramos. Note the lexeme itself, hablar, is relatively common. In this work, we investigate whether state-of-the-art bilingual lexicon inducers are capable of learning this kind of generalization. We introduce 40 morphologically complete dictionaries in 10 languages and evaluate three of the best performing models on the task of translation of less frequent morphological forms. We demonstrate that the performance of state-of-the-art models drops considerably when evaluated on infrequent morphological inflections and then show that adding a simple morphological constraint at training time improves the performance, proving that the bilingual lexicon inducers can benefit from better encoding of morphology.
Pretrained language models are promising particularly for low-resource languages as they only require unlabelled data. However, training existing models requires huge amounts of compute, while pretrained cross-lingual models often underperform on low-resource languages. We propose Multi-lingual language model Fine-Tuning (MultiFiT) to enable practitioners to train and fine-tune language models efficiently in their own language. In addition, we propose a zero-shot method using an existing pretrained cross-lingual model. We evaluate our methods on two widely used cross-lingual classification datasets where they outperform models pretrained on orders of magnitude more data and compute. We release all models and code.
While most previous work has focused on different pretraining objectives and architectures for transfer learning, we ask how to best adapt the pretrained model to a given target task. We focus on the two most common forms of adaptation, feature extraction (where the pretrained weights are frozen), and directly fine-tuning the pretrained model. Our empirical results across diverse NLP tasks with two state-of-the-art models show that the relative performance of fine-tuning vs. feature extraction depends on the similarity of the pretraining and target tasks. We explore possible explanations for this finding and provide a set of adaptation guidelines for the NLP practitioner.
We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state of the art for aspect-based and topic-based sentiment analysis.
The proliferation of fake news and filter bubbles makes it increasingly difficult to form an unbiased, balanced opinion towards a topic. To ameliorate this, we propose 360° Stance Detection, a tool that aggregates news with multiple perspectives on a topic. It presents them on a spectrum ranging from support to opposition, enabling the user to base their opinion on multiple pieces of diverse evidence.
Most recent approaches to bilingual dictionary induction find a linear alignment between the word vector spaces of two languages. We show that projecting the two languages onto a third, latent space, rather than directly onto each other, while equivalent in terms of expressivity, makes it easier to learn approximate alignments. Our modified approach also allows for supporting languages to be included in the alignment process, to obtain an even better performance in low resource settings.
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100 times more data. We open-source our pretrained models and code.
Unsupervised machine translation - i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora - seems impossible, but nevertheless, Lample et al. (2017) recently proposed a fully unsupervised machine translation (MT) model. The model relies heavily on an adversarial, unsupervised cross-lingual word embedding technique for bilingual dictionary induction (Conneau et al., 2017), which we examine here. Our results identify the limitations of current unsupervised MT: unsupervised bilingual dictionary induction performs much worse on morphologically rich languages that are not dependent marking, when monolingual corpora from different domains or different embedding algorithms are used. We show that a simple trick, exploiting a weak supervision signal from identical words, enables more robust induction and establish a near-perfect correlation between unsupervised bilingual dictionary induction performance and a previously unexplored graph similarity metric.
Novel neural models have been proposed in recent years for learning under domain shift. Most models, however, only evaluate on a single task, on proprietary datasets, or compare to weak baselines, which makes comparison of models difficult. In this paper, we re-evaluate classic general-purpose bootstrapping approaches in the context of neural networks under domain shifts vs. recent neural approaches and propose a novel multi-task tri-training method that reduces the time and space complexity of classic tri-training. Extensive experiments on two benchmarks for part-of-speech tagging and sentiment analysis are negative: while our novel method establishes a new state-of-the-art for sentiment analysis, it does not fare consistently the best. More importantly, we arrive at the somewhat surprising conclusion that classic tri-training, with some additions, outperforms the state-of-the-art for NLP. Hence classic approaches constitute an important and strong baseline.
We introduce a novel discriminative latent-variable model for the task of bilingual lexicon induction. Our model combines the bipartite matching dictionary prior of Haghighi et al. (2008) with a state-of-the-art embedding-based approach. To train the model, we derive an efficient Viterbi EM algorithm. We provide empirical improvements on six language pairs under two metrics and show that the prior theoretically and empirically helps to mitigate the hubness problem. We also demonstrate how previous work may be viewed as a similarly fashioned latent-variable model, albeit with a different prior.
Domain similarity measures can be used to gauge adaptability and select suitable data for transfer learning, but existing approaches define ad hoc measures that are deemed suitable for respective tasks. Inspired by work on curriculum learning, we propose to learn data selection measures using Bayesian Optimization and evaluate them across models, domains and tasks. Our learned measures outperform existing domain similarity measures significantly on three tasks: sentiment analysis, part-of-speech tagging, and parsing. We show the importance of complementing similarity with diversity, and that learned measures are–to some degree–transferable across models, domains, and even tasks.