Sebastian Ruder


2022

pdf bib
FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural Language Understanding
Yanan Zheng | Jing Zhou | Yujie Qian | Ming Ding | Chonghua Liao | Li Jian | Ruslan Salakhutdinov | Jie Tang | Sebastian Ruder | Zhilin Yang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The few-shot natural language understanding (NLU) task has attracted much recent attention. However, prior methods have been evaluated under a disparate set of protocols, which hinders fair comparison and measuring the progress of the field. To address this issue, we introduce an evaluation framework that improves previous evaluation procedures in three key aspects, i.e., test performance, dev-test correlation, and stability. Under this new evaluation framework, we re-evaluate several state-of-the-art few-shot methods for NLU tasks. Our framework reveals new insights: (1) both the absolute performance and relative gap of the methods were not accurately estimated in prior literature; (2) no single method dominates most tasks with consistent performance; (3) improvements of some methods diminish with a larger pretrained model; and (4) gains from different methods are often complementary and the best combined model performs close to a strong fully-supervised baseline. We open-source our toolkit, FewNLU, that implements our evaluation framework along with a number of state-of-the-art methods.

pdf bib
Expanding Pretrained Models to Thousands More Languages via Lexicon-based Adaptation
Xinyi Wang | Sebastian Ruder | Graham Neubig
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The performance of multilingual pretrained models is highly dependent on the availability of monolingual or parallel text present in a target language. Thus, the majority of the world’s languages cannot benefit from recent progress in NLP as they have no or limited textual data. To expand possibilities of using NLP technology in these under-represented languages, we systematically study strategies that relax the reliance on conventional language resources through the use of bilingual lexicons, an alternative resource with much better language coverage. We analyze different strategies to synthesize textual or labeled data using lexicons, and how this data can be combined with monolingual or parallel text when available. For 19 under-represented languages across 3 tasks, our methods lead to consistent improvements of up to 5 and 15 points with and without extra monolingual text respectively. Overall, our study highlights how NLP methods can be adapted to thousands more languages that are under-served by current technology.

pdf bib
One Country, 700+ Languages: NLP Challenges for Underrepresented Languages and Dialects in Indonesia
Alham Fikri Aji | Genta Indra Winata | Fajri Koto | Samuel Cahyawijaya | Ade Romadhony | Rahmad Mahendra | Kemal Kurniawan | David Moeljadi | Radityo Eko Prasojo | Timothy Baldwin | Jey Han Lau | Sebastian Ruder
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

NLP research is impeded by a lack of resources and awareness of the challenges presented by underrepresented languages and dialects. Focusing on the languages spoken in Indonesia, the second most linguistically diverse and the fourth most populous nation of the world, we provide an overview of the current state of NLP research for Indonesia’s 700+ languages. We highlight challenges in Indonesian NLP and how these affect the performance of current NLP systems. Finally, we provide general recommendations to help develop NLP technology not only for languages of Indonesia but also other underrepresented languages.

pdf bib
Memorisation versus Generalisation in Pre-trained Language Models
Michael Tänzer | Sebastian Ruder | Marek Rei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

State-of-the-art pre-trained language models have been shown to memorise facts and perform well with limited amounts of training data. To gain a better understanding of how these models learn, we study their generalisation and memorisation capabilities in noisy and low-resource scenarios. We find that the training of these models is almost unaffected by label noise and that it is possible to reach near-optimal results even on extremely noisy datasets. However, our experiments also show that they mainly learn from high-frequency patterns and largely fail when tested on low-resource tasks such as few-shot learning and rare entity recognition. To mitigate such limitations, we propose an extension based on prototypical networks that improves performance in low-resource named entity recognition tasks.

pdf bib
Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the Research Manifold
Sebastian Ruder | Ivan Vulić | Anders Søgaard
Findings of the Association for Computational Linguistics: ACL 2022

The prototypical NLP experiment trains a standard architecture on labeled English data and optimizes for accuracy, without accounting for other dimensions such as fairness, interpretability, or computational efficiency. We show through a manual classification of recent NLP research papers that this is indeed the case and refer to it as the square one experimental setup. We observe that NLP research often goes beyond the square one setup, e.g, focusing not only on accuracy, but also on fairness or interpretability, but typically only along a single dimension. Most work targeting multilinguality, for example, considers only accuracy; most work on fairness or interpretability considers only English; and so on. Such one-dimensionality of most research means we are only exploring a fraction of the NLP research search space. We provide historical and recent examples of how the square one bias has led researchers to draw false conclusions or make unwise choices, point to promising yet unexplored directions on the research manifold, and make practical recommendations to enable more multi-dimensional research. We open-source the results of our annotations to enable further analysis.

2021

pdf bib
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks
Rabeeh Karimi Mahabadi | Sebastian Ruder | Mostafa Dehghani | James Henderson
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

State-of-the-art parameter-efficient fine-tuning methods rely on introducing adapter modules between the layers of a pretrained language model. However, such modules are trained separately for each task and thus do not enable sharing information across tasks. In this paper, we show that we can learn adapter parameters for all layers and tasks by generating them using shared hypernetworks, which condition on task, adapter position, and layer id in a transformer model. This parameter-efficient multi-task learning framework allows us to achieve the best of both worlds by sharing knowledge across tasks via hypernetworks while enabling the model to adapt to each individual task through task-specific adapters. Experiments on the well-known GLUE benchmark show improved performance in multi-task learning while adding only 0.29% parameters per task. We additionally demonstrate substantial performance improvements in few-shot domain generalization across a variety of tasks. Our code is publicly available in https://github.com/rabeehk/hyperformer.

pdf bib
How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models
Phillip Rust | Jonas Pfeiffer | Ivan Vulić | Sebastian Ruder | Iryna Gurevych
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model’s vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language.

pdf bib
Proceedings of the 1st Workshop on Multilingual Representation Learning
Duygu Ataman | Alexandra Birch | Alexis Conneau | Orhan Firat | Sebastian Ruder | Gozde Gul Sahin
Proceedings of the 1st Workshop on Multilingual Representation Learning

pdf bib
Efficient Test Time Adapter Ensembling for Low-resource Language Varieties
Xinyi Wang | Yulia Tsvetkov | Sebastian Ruder | Graham Neubig
Findings of the Association for Computational Linguistics: EMNLP 2021

Adapters are light-weight modules that allow parameter-efficient fine-tuning of pretrained models. Specialized language and task adapters have recently been proposed to facilitate cross-lingual transfer of multilingual pretrained models (Pfeiffer et al., 2020b). However, this approach requires training a separate language adapter for every language one wishes to support, which can be impractical for languages with limited data. An intuitive solution is to use a related language adapter for the new language variety, but we observe that this solution can lead to sub-optimal performance. In this paper, we aim to improve the robustness of language adapters to uncovered languages without training new adapters. We find that ensembling multiple existing language adapters makes the fine-tuned model significantly more robust to other language varieties not included in these adapters. Building upon this observation, we propose Entropy Minimized Ensemble of Adapters (EMEA), a method that optimizes the ensemble weights of the pretrained language adapters for each test sentence by minimizing the entropy of its predictions. Experiments on three diverse groups of language varieties show that our method leads to significant improvements on both named entity recognition and part-of-speech tagging across all languages.

pdf bib
MAD-G: Multilingual Adapter Generation for Efficient Cross-Lingual Transfer
Alan Ansell | Edoardo Maria Ponti | Jonas Pfeiffer | Sebastian Ruder | Goran Glavaš | Ivan Vulić | Anna Korhonen
Findings of the Association for Computational Linguistics: EMNLP 2021

Adapter modules have emerged as a general parameter-efficient means to specialize a pretrained encoder to new domains. Massively multilingual transformers (MMTs) have particularly benefited from additional training of language-specific adapters. However, this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets. In this work, we propose MAD-G (Multilingual ADapter Generation), which contextually generates language adapters from language representations based on typological features. In contrast to prior work, our time- and space-efficient MAD-G approach enables (1) sharing of linguistic knowledge across languages and (2) zero-shot inference by generating language adapters for unseen languages. We thoroughly evaluate MAD-G in zero-shot cross-lingual transfer on part-of-speech tagging, dependency parsing, and named entity recognition. While offering (1) improved fine-tuning efficiency (by a factor of around 50 in our experiments), (2) a smaller parameter budget, and (3) increased language coverage, MAD-G remains competitive with more expensive methods for language-specific adapter training across the board. Moreover, it offers substantial benefits for low-resource languages, particularly on the NER task in low-resource African languages. Finally, we demonstrate that MAD-G’s transfer performance can be further improved via: (i) multi-source training, i.e., by generating and combining adapters of multiple languages with available task-specific training data; and (ii) by further fine-tuning generated MAD-G adapters for languages with monolingual data.

pdf bib
MasakhaNER: Named Entity Recognition for African Languages
David Ifeoluwa Adelani | Jade Abbott | Graham Neubig | Daniel D’souza | Julia Kreutzer | Constantine Lignos | Chester Palen-Michel | Happy Buzaaba | Shruti Rijhwani | Sebastian Ruder | Stephen Mayhew | Israel Abebe Azime | Shamsuddeen H. Muhammad | Chris Chinenye Emezue | Joyce Nakatumba-Nabende | Perez Ogayo | Aremu Anuoluwapo | Catherine Gitau | Derguene Mbaye | Jesujoba Alabi | Seid Muhie Yimam | Tajuddeen Rabiu Gwadabe | Ignatius Ezeani | Rubungo Andre Niyongabo | Jonathan Mukiibi | Verrah Otiende | Iroro Orife | Davis David | Samba Ngom | Tosin Adewumi | Paul Rayson | Mofetoluwa Adeyemi | Gerald Muriuki | Emmanuel Anebi | Chiamaka Chukwuneke | Nkiruka Odu | Eric Peter Wairagala | Samuel Oyerinde | Clemencia Siro | Tobius Saul Bateesa | Temilola Oloyede | Yvonne Wambui | Victor Akinode | Deborah Nabagereka | Maurice Katusiime | Ayodele Awokoya | Mouhamadane MBOUP | Dibora Gebreyohannes | Henok Tilaye | Kelechi Nwaike | Degaga Wolde | Abdoulaye Faye | Blessing Sibanda | Orevaoghene Ahia | Bonaventure F. P. Dossou | Kelechi Ogueji | Thierno Ibrahima DIOP | Abdoulaye Diallo | Adewale Akinfaderin | Tendai Marengereke | Salomey Osei
Transactions of the Association for Computational Linguistics, Volume 9

Abstract We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition (NER) in ten African languages. We detail the characteristics of these languages to help researchers and practitioners better understand the challenges they pose for NER tasks. We analyze our datasets and conduct an extensive empirical evaluation of state- of-the-art methods across both supervised and transfer learning settings. Finally, we release the data, code, and models to inspire future research on African NLP.1

pdf bib
Multi-view Subword Regularization
Xinyi Wang | Sebastian Ruder | Graham Neubig
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multilingual pretrained representations generally rely on subword segmentation algorithms to create a shared multilingual vocabulary. However, standard heuristic algorithms often lead to sub-optimal segmentation, especially for languages with limited amounts of data. In this paper, we take two major steps towards alleviating this problem. First, we demonstrate empirically that applying existing subword regularization methods (Kudo, 2018; Provilkov et al., 2020) during fine-tuning of pre-trained multilingual representations improves the effectiveness of cross-lingual transfer. Second, to take full advantage of different possible input segmentations, we propose Multi-view Subword Regularization (MVR), a method that enforces the consistency of predictors between using inputs tokenized by the standard and probabilistic segmentations. Results on the XTREME multilingual benchmark (Hu et al., 2020) show that MVR brings consistent improvements of up to 2.5 points over using standard segmentation algorithms.

pdf bib
IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation
Samuel Cahyawijaya | Genta Indra Winata | Bryan Wilie | Karissa Vincentio | Xiaohong Li | Adhiguna Kuncoro | Sebastian Ruder | Zhi Yuan Lim | Syafri Bahar | Masayu Khodra | Ayu Purwarianti | Pascale Fung
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource—yet widely spoken—languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks—despite using only one-fifth the parameters of a larger multilingual model, mBART-large (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, localized languages to achieve more efficient learning and faster inference at very low-resource languages like Javanese and Sundanese.

pdf bib
UNKs Everywhere: Adapting Multilingual Language Models to New Scripts
Jonas Pfeiffer | Ivan Vulić | Iryna Gurevych | Sebastian Ruder
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model’s embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT’s and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model.

pdf bib
XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation
Sebastian Ruder | Noah Constant | Jan Botha | Aditya Siddhant | Orhan Firat | Jinlan Fu | Pengfei Liu | Junjie Hu | Dan Garrette | Graham Neubig | Melvin Johnson
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models.

pdf bib
Multi-Domain Multilingual Question Answering
Sebastian Ruder | Avi Sil
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Question answering (QA) is one of the most challenging and impactful tasks in natural language processing. Most research in QA, however, has focused on the open-domain or monolingual setting while most real-world applications deal with specific domains or languages. In this tutorial, we attempt to bridge this gap. Firstly, we introduce standard benchmarks in multi-domain and multilingual QA. In both scenarios, we discuss state-of-the-art approaches that achieve impressive performance, ranging from zero-shot transfer learning to out-of-the-box training with open-domain QA systems. Finally, we will present open research problems that this new research agenda poses such as multi-task learning, cross-lingual transfer learning, domain adaptation and training large scale pre-trained multilingual language models.

2020

pdf bib
Are All Good Word Vector Spaces Isomorphic?
Ivan Vulić | Sebastian Ruder | Anders Søgaard
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing algorithms for aligning cross-lingual word vector spaces assume that vector spaces are approximately isomorphic. As a result, they perform poorly or fail completely on non-isomorphic spaces. Such non-isomorphism has been hypothesised to result from typological differences between languages. In this work, we ask whether non-isomorphism is also crucially a sign of degenerate word vector spaces. We present a series of experiments across diverse languages which show that variance in performance across language pairs is not only due to typological differences, but can mostly be attributed to the size of the monolingual resources available, and to the properties and duration of monolingual training (e.g. “under-training”).

pdf bib
MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer
Jonas Pfeiffer | Ivan Vulić | Iryna Gurevych | Sebastian Ruder
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.

pdf bib
AxCell: Automatic Extraction of Results from Machine Learning Papers
Marcin Kardas | Piotr Czapla | Pontus Stenetorp | Sebastian Ruder | Sebastian Riedel | Ross Taylor | Robert Stojnic
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Tracking progress in machine learning has become increasingly difficult with the recent explosion in the number of papers. In this paper, we present AxCell, an automatic machine learning pipeline for extracting results from papers. AxCell uses several novel components, including a table segmentation subtask, to learn relevant structural knowledge that aids extraction. When compared with existing methods, our approach significantly improves the state of the art for results extraction. We also release a structured, annotated dataset for training models for results extraction, and a dataset for evaluating the performance of models on this task. Lastly, we show the viability of our approach enables it to be used for semi-automated results extraction in production, suggesting our improvements make this task practically viable for the first time. Code is available on GitHub.

pdf bib
AdapterHub: A Framework for Adapting Transformers
Jonas Pfeiffer | Andreas Rücklé | Clifton Poth | Aishwarya Kamath | Ivan Vulić | Sebastian Ruder | Kyunghyun Cho | Iryna Gurevych
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The current modus operandi in NLP involves downloading and fine-tuning pre-trained models consisting of millions or billions of parameters. Storing and sharing such large trained models is expensive, slow, and time-consuming, which impedes progress towards more general and versatile NLP methods that learn from and for many tasks. Adapters—small learnt bottleneck layers inserted within each layer of a pre-trained model— ameliorate this issue by avoiding full fine-tuning of the entire model. However, sharing and integrating adapter layers is not straightforward. We propose AdapterHub, a framework that allows dynamic “stiching-in” of pre-trained adapters for different tasks and languages. The framework, built on top of the popular HuggingFace Transformers library, enables extremely easy and quick adaptations of state-of-the-art pre-trained models (e.g., BERT, RoBERTa, XLM-R) across tasks and languages. Downloading, sharing, and training adapters is as seamless as possible using minimal changes to the training scripts and a specialized infrastructure. Our framework enables scalable and easy access to sharing of task-specific models, particularly in low-resource scenarios. AdapterHub includes all recent adapter architectures and can be found at AdapterHub.ml

pdf bib
Morphologically Aware Word-Level Translation
Paula Czarnowska | Sebastian Ruder | Ryan Cotterell | Ann Copestake
Proceedings of the 28th International Conference on Computational Linguistics

We propose a novel morphologically aware probability model for bilingual lexicon induction, which jointly models lexeme translation and inflectional morphology in a structured way. Our model exploits the basic linguistic intuition that the lexeme is the key lexical unit of meaning, while inflectional morphology provides additional syntactic information. This approach leads to substantial performance improvements—19% average improvement in accuracy across 6 language pairs over the state of the art in the supervised setting and 16% in the weakly supervised setting. As another contribution, we highlight issues associated with modern BLI that stem from ignoring inflectional morphology, and propose three suggestions for improving the task.

pdf bib
On the Cross-lingual Transferability of Monolingual Representations
Mikel Artetxe | Sebastian Ruder | Dani Yogatama
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators.

pdf bib
A Call for More Rigor in Unsupervised Cross-lingual Learning
Mikel Artetxe | Sebastian Ruder | Dani Yogatama | Gorka Labaka | Eneko Agirre
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We review motivations, definition, approaches, and methodology for unsupervised cross-lingual learning and call for a more rigorous position in each of them. An existing rationale for such research is based on the lack of parallel data for many of the world’s languages. However, we argue that a scenario without any parallel data and abundant monolingual data is unrealistic in practice. We also discuss different training signals that have been used in previous work, which depart from the pure unsupervised setting. We then describe common methodological issues in tuning and evaluation of unsupervised cross-lingual models and present best practices. Finally, we provide a unified outlook for different types of research in this area (i.e., cross-lingual word embeddings, deep multilingual pretraining, and unsupervised machine translation) and argue for comparable evaluation of these models.

2019

pdf bib
Transfer Learning in Natural Language Processing
Sebastian Ruder | Matthew E. Peters | Swabha Swayamdipta | Thomas Wolf
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials

The classic supervised machine learning paradigm is based on learning in isolation, a single predictive model for a task using a single dataset. This approach requires a large number of training examples and performs best for well-defined and narrow tasks. Transfer learning refers to a set of methods that extend this approach by leveraging data from additional domains or tasks to train a model with better generalization properties. Over the last two years, the field of Natural Language Processing (NLP) has witnessed the emergence of several transfer learning methods and architectures which significantly improved upon the state-of-the-art on a wide range of NLP tasks. These improvements together with the wide availability and ease of integration of these methods are reminiscent of the factors that led to the success of pretrained word embeddings and ImageNet pretraining in computer vision, and indicate that these methods will likely become a common tool in the NLP landscape as well as an important research direction. We will present an overview of modern transfer learning methods in NLP, how models are pre-trained, what information the representations they learn capture, and review examples and case studies on how these models can be integrated and adapted in downstream NLP tasks.

pdf bib
Don’t Forget the Long Tail! A Comprehensive Analysis of Morphological Generalization in Bilingual Lexicon Induction
Paula Czarnowska | Sebastian Ruder | Edouard Grave | Ryan Cotterell | Ann Copestake
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Human translators routinely have to translate rare inflections of words – due to the Zipfian distribution of words in a language. When translating from Spanish, a good translator would have no problem identifying the proper translation of a statistically rare inflection such as habláramos. Note the lexeme itself, hablar, is relatively common. In this work, we investigate whether state-of-the-art bilingual lexicon inducers are capable of learning this kind of generalization. We introduce 40 morphologically complete dictionaries in 10 languages and evaluate three of the best performing models on the task of translation of less frequent morphological forms. We demonstrate that the performance of state-of-the-art models drops considerably when evaluated on infrequent morphological inflections and then show that adding a simple morphological constraint at training time improves the performance, proving that the bilingual lexicon inducers can benefit from better encoding of morphology.

pdf bib
MultiFiT: Efficient Multi-lingual Language Model Fine-tuning
Julian Eisenschlos | Sebastian Ruder | Piotr Czapla | Marcin Kadras | Sylvain Gugger | Jeremy Howard
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Pretrained language models are promising particularly for low-resource languages as they only require unlabelled data. However, training existing models requires huge amounts of compute, while pretrained cross-lingual models often underperform on low-resource languages. We propose Multi-lingual language model Fine-Tuning (MultiFiT) to enable practitioners to train and fine-tune language models efficiently in their own language. In addition, we propose a zero-shot method using an existing pretrained cross-lingual model. We evaluate our methods on two widely used cross-lingual classification datasets where they outperform models pretrained on orders of magnitude more data and compute. We release all models and code.

pdf bib
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
Isabelle Augenstein | Spandana Gella | Sebastian Ruder | Katharina Kann | Burcu Can | Johannes Welbl | Alexis Conneau | Xiang Ren | Marek Rei
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

pdf bib
To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks
Matthew E. Peters | Sebastian Ruder | Noah A. Smith
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

While most previous work has focused on different pretraining objectives and architectures for transfer learning, we ask how to best adapt the pretrained model to a given target task. We focus on the two most common forms of adaptation, feature extraction (where the pretrained weights are frozen), and directly fine-tuning the pretrained model. Our empirical results across diverse NLP tasks with two state-of-the-art models show that the relative performance of fine-tuning vs. feature extraction depends on the similarity of the pretraining and target tasks. We explore possible explanations for this finding and provide a set of adaptation guidelines for the NLP practitioner.

pdf bib
How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions
Goran Glavaš | Robert Litschko | Sebastian Ruder | Ivan Vulić
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Cross-lingual word embeddings (CLEs) facilitate cross-lingual transfer of NLP models. Despite their ubiquitous downstream usage, increasingly popular projection-based CLE models are almost exclusively evaluated on bilingual lexicon induction (BLI). Even the BLI evaluations vary greatly, hindering our ability to correctly interpret performance and properties of different CLE models. In this work, we take the first step towards a comprehensive evaluation of CLE models: we thoroughly evaluate both supervised and unsupervised CLE models, for a large number of language pairs, on BLI and three downstream tasks, providing new insights concerning the ability of cutting-edge CLE models to support cross-lingual NLP. We empirically demonstrate that the performance of CLE models largely depends on the task at hand and that optimizing CLE models for BLI may hurt downstream performance. We indicate the most robust supervised and unsupervised CLE models and emphasize the need to reassess simple baselines, which still display competitive performance across the board. We hope our work catalyzes further research on CLE evaluation and model analysis.

pdf bib
Unsupervised Cross-Lingual Representation Learning
Sebastian Ruder | Anders Søgaard | Ivan Vulić
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

In this tutorial, we provide a comprehensive survey of the exciting recent work on cutting-edge weakly-supervised and unsupervised cross-lingual word representations. After providing a brief history of supervised cross-lingual word representations, we focus on: 1) how to induce weakly-supervised and unsupervised cross-lingual word representations in truly resource-poor settings where bilingual supervision cannot be guaranteed; 2) critical examinations of different training conditions and requirements under which unsupervised algorithms can and cannot work effectively; 3) more robust methods for distant language pairs that can mitigate instability issues and low performance for distant language pairs; 4) how to comprehensively evaluate such representations; and 5) diverse applications that benefit from cross-lingual word representations (e.g., MT, dialogue, cross-lingual sequence labeling and structured prediction applications, cross-lingual IR).

2018

pdf bib
Universal Language Model Fine-tuning for Text Classification
Jeremy Howard | Sebastian Ruder
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100 times more data. We open-source our pretrained models and code.

pdf bib
On the Limitations of Unsupervised Bilingual Dictionary Induction
Anders Søgaard | Sebastian Ruder | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised machine translation - i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora - seems impossible, but nevertheless, Lample et al. (2017) recently proposed a fully unsupervised machine translation (MT) model. The model relies heavily on an adversarial, unsupervised cross-lingual word embedding technique for bilingual dictionary induction (Conneau et al., 2017), which we examine here. Our results identify the limitations of current unsupervised MT: unsupervised bilingual dictionary induction performs much worse on morphologically rich languages that are not dependent marking, when monolingual corpora from different domains or different embedding algorithms are used. We show that a simple trick, exploiting a weak supervision signal from identical words, enables more robust induction and establish a near-perfect correlation between unsupervised bilingual dictionary induction performance and a previously unexplored graph similarity metric.

pdf bib
Strong Baselines for Neural Semi-Supervised Learning under Domain Shift
Sebastian Ruder | Barbara Plank
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Novel neural models have been proposed in recent years for learning under domain shift. Most models, however, only evaluate on a single task, on proprietary datasets, or compare to weak baselines, which makes comparison of models difficult. In this paper, we re-evaluate classic general-purpose bootstrapping approaches in the context of neural networks under domain shifts vs. recent neural approaches and propose a novel multi-task tri-training method that reduces the time and space complexity of classic tri-training. Extensive experiments on two benchmarks for part-of-speech tagging and sentiment analysis are negative: while our novel method establishes a new state-of-the-art for sentiment analysis, it does not fare consistently the best. More importantly, we arrive at the somewhat surprising conclusion that classic tri-training, with some additions, outperforms the state-of-the-art for NLP. Hence classic approaches constitute an important and strong baseline.

pdf bib
Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction
Yova Kementchedjhieva | Sebastian Ruder | Ryan Cotterell | Anders Søgaard
Proceedings of the 22nd Conference on Computational Natural Language Learning

Most recent approaches to bilingual dictionary induction find a linear alignment between the word vector spaces of two languages. We show that projecting the two languages onto a third, latent space, rather than directly onto each other, while equivalent in terms of expressivity, makes it easier to learn approximate alignments. Our modified approach also allows for supporting languages to be included in the alignment process, to obtain an even better performance in low resource settings.

pdf bib
Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate Label Spaces
Isabelle Augenstein | Sebastian Ruder | Anders Søgaard
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state of the art for aspect-based and topic-based sentiment analysis.

pdf bib
360° Stance Detection
Sebastian Ruder | John Glover | Afshin Mehrabani | Parsa Ghaffari
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

The proliferation of fake news and filter bubbles makes it increasingly difficult to form an unbiased, balanced opinion towards a topic. To ameliorate this, we propose 360° Stance Detection, a tool that aggregates news with multiple perspectives on a topic. It presents them on a spectrum ranging from support to opposition, enabling the user to base their opinion on multiple pieces of diverse evidence.

pdf bib
A Discriminative Latent-Variable Model for Bilingual Lexicon Induction
Sebastian Ruder | Ryan Cotterell | Yova Kementchedjhieva | Anders Søgaard
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce a novel discriminative latent-variable model for the task of bilingual lexicon induction. Our model combines the bipartite matching dictionary prior of Haghighi et al. (2008) with a state-of-the-art embedding-based approach. To train the model, we derive an efficient Viterbi EM algorithm. We provide empirical improvements on six language pairs under two metrics and show that the prior theoretically and empirically helps to mitigate the hubness problem. We also demonstrate how previous work may be viewed as a similarly fashioned latent-variable model, albeit with a different prior.

2017

pdf bib
Learning to select data for transfer learning with Bayesian Optimization
Sebastian Ruder | Barbara Plank
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Domain similarity measures can be used to gauge adaptability and select suitable data for transfer learning, but existing approaches define ad hoc measures that are deemed suitable for respective tasks. Inspired by work on curriculum learning, we propose to learn data selection measures using Bayesian Optimization and evaluate them across models, domains and tasks. Our learned measures outperform existing domain similarity measures significantly on three tasks: sentiment analysis, part-of-speech tagging, and parsing. We show the importance of complementing similarity with diversity, and that learned measures are–to some degree–transferable across models, domains, and even tasks.

2016

pdf bib
A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis
Sebastian Ruder | Parsa Ghaffari | John G. Breslin
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Towards a continuous modeling of natural language domains
Sebastian Ruder | Parsa Ghaffari | John G. Breslin
Proceedings of the Workshop on Uphill Battles in Language Processing: Scaling Early Achievements to Robust Methods

pdf bib
INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification
Sebastian Ruder | Parsa Ghaffari | John G. Breslin
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf bib
INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis
Sebastian Ruder | Parsa Ghaffari | John G. Breslin
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

Search
Co-authors