Sebastian Schuster


2021

pdf bib
Predicting scalar inferences from “or” to “not both” using neural sentence encoders
Elissa Li | Sebastian Schuster | Judith Degen
Proceedings of the Society for Computation in Linguistics 2021

pdf bib
NOPE: A Corpus of Naturally-Occurring Presuppositions in English
Alicia Parrish | Sebastian Schuster | Alex Warstadt | Omar Agha | Soo-Hwan Lee | Zhuoye Zhao | Samuel R. Bowman | Tal Linzen
Proceedings of the 25th Conference on Computational Natural Language Learning

Understanding language requires grasping not only the overtly stated content, but also making inferences about things that were left unsaid. These inferences include presuppositions, a phenomenon by which a listener learns about new information through reasoning about what a speaker takes as given. Presuppositions require complex understanding of the lexical and syntactic properties that trigger them as well as the broader conversational context. In this work, we introduce the Naturally-Occurring Presuppositions in English (NOPE) Corpus to investigate the context-sensitivity of 10 different types of presupposition triggers and to evaluate machine learning models’ ability to predict human inferences. We find that most of the triggers we investigate exhibit moderate variability. We further find that transformer-based models draw correct inferences in simple cases involving presuppositions, but they fail to capture the minority of exceptional cases in which human judgments reveal complex interactions between context and triggers.

2020

pdf bib
Harnessing the linguistic signal to predict scalar inferences
Sebastian Schuster | Yuxing Chen | Judith Degen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pragmatic inferences often subtly depend on the presence or absence of linguistic features. For example, the presence of a partitive construction (of the) increases the strength of a so-called scalar inference: listeners perceive the inference that Chris did not eat all of the cookies to be stronger after hearing “Chris ate some of the cookies” than after hearing the same utterance without a partitive, “Chris ate some cookies”. In this work, we explore to what extent neural network sentence encoders can learn to predict the strength of scalar inferences. We first show that an LSTM-based sentence encoder trained on an English dataset of human inference strength ratings is able to predict ratings with high accuracy (r = 0.78). We then probe the model’s behavior using manually constructed minimal sentence pairs and corpus data. We first that the model inferred previously established associations between linguistic features and inference strength, suggesting that the model learns to use linguistic features to predict pragmatic inferences.

pdf bib
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)
Marie-Catherine de Marneffe | Miryam de Lhoneux | Joakim Nivre | Sebastian Schuster
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)

pdf bib
Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection
Joakim Nivre | Marie-Catherine de Marneffe | Filip Ginter | Jan Hajič | Christopher D. Manning | Sampo Pyysalo | Sebastian Schuster | Francis Tyers | Daniel Zeman
Proceedings of the 12th Language Resources and Evaluation Conference

Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the universal guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages.

2019

pdf bib
Cross-lingual Transfer Learning for Multilingual Task Oriented Dialog
Sebastian Schuster | Sonal Gupta | Rushin Shah | Mike Lewis
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Since data collection for machine learning models for this task is time-consuming, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. However, development of such models has largely been hindered by the lack of multilingual training data. In this paper, we present a new data set of 57k annotated utterances in English (43k), Spanish (8.6k) and Thai (5k) across the domains weather, alarm, and reminder. We use this data set to evaluate three different cross-lingual transfer methods: (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, multilingual contextual word representations give better results than using cross-lingual static embeddings. We also compare the cross-lingual methods to using monolingual resources in the form of contextual ELMo representations and find that given just small amounts of target language data, this method outperforms all cross-lingual methods, which highlights the need for more sophisticated cross-lingual methods.

2018

pdf bib
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)
Marie-Catherine de Marneffe | Teresa Lynn | Sebastian Schuster
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)

pdf bib
Enhancing Universal Dependency Treebanks: A Case Study
Joakim Nivre | Paola Marongiu | Filip Ginter | Jenna Kanerva | Simonetta Montemagni | Sebastian Schuster | Maria Simi
Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)

We evaluate two cross-lingual techniques for adding enhanced dependencies to existing treebanks in Universal Dependencies. We apply a rule-based system developed for English and a data-driven system trained on Finnish to Swedish and Italian. We find that both systems are accurate enough to bootstrap enhanced dependencies in existing UD treebanks. In the case of Italian, results are even on par with those of a prototype language-specific system.

pdf bib
Crowdsourcing a Large Corpus of Clickbait on Twitter
Martin Potthast | Tim Gollub | Kristof Komlossy | Sebastian Schuster | Matti Wiegmann | Erika Patricia Garces Fernandez | Matthias Hagen | Benno Stein
Proceedings of the 27th International Conference on Computational Linguistics

Clickbait has become a nuisance on social media. To address the urging task of clickbait detection, we constructed a new corpus of 38,517 annotated Twitter tweets, the Webis Clickbait Corpus 2017. To avoid biases in terms of publisher and topic, tweets were sampled from the top 27 most retweeted news publishers, covering a period of 150 days. Each tweet has been annotated on 4-point scale by five annotators recruited at Amazon’s Mechanical Turk. The corpus has been employed to evaluate 12 clickbait detectors submitted to the Clickbait Challenge 2017. Download: https://webis.de/data/webis-clickbait-17.html Challenge: https://clickbait-challenge.org

pdf bib
Sentences with Gapping: Parsing and Reconstructing Elided Predicates
Sebastian Schuster | Joakim Nivre | Christopher D. Manning
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Sentences with gapping, such as Paul likes coffee and Mary tea, lack an overt predicate to indicate the relation between two or more arguments. Surface syntax representations of such sentences are often produced poorly by parsers, and even if correct, not well suited to downstream natural language understanding tasks such as relation extraction that are typically designed to extract information from sentences with canonical clause structure. In this paper, we present two methods for parsing to a Universal Dependencies graph representation that explicitly encodes the elided material with additional nodes and edges. We find that both methods can reconstruct elided material from dependency trees with high accuracy when the parser correctly predicts the existence of a gap. We further demonstrate that one of our methods can be applied to other languages based on a case study on Swedish.

2017

pdf bib
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
Daniel Zeman | Martin Popel | Milan Straka | Jan Hajič | Joakim Nivre | Filip Ginter | Juhani Luotolahti | Sampo Pyysalo | Slav Petrov | Martin Potthast | Francis Tyers | Elena Badmaeva | Memduh Gokirmak | Anna Nedoluzhko | Silvie Cinková | Jan Hajič jr. | Jaroslava Hlaváčová | Václava Kettnerová | Zdeňka Urešová | Jenna Kanerva | Stina Ojala | Anna Missilä | Christopher D. Manning | Sebastian Schuster | Siva Reddy | Dima Taji | Nizar Habash | Herman Leung | Marie-Catherine de Marneffe | Manuela Sanguinetti | Maria Simi | Hiroshi Kanayama | Valeria de Paiva | Kira Droganova | Héctor Martínez Alonso | Çağrı Çöltekin | Umut Sulubacak | Hans Uszkoreit | Vivien Macketanz | Aljoscha Burchardt | Kim Harris | Katrin Marheinecke | Georg Rehm | Tolga Kayadelen | Mohammed Attia | Ali Elkahky | Zhuoran Yu | Emily Pitler | Saran Lertpradit | Michael Mandl | Jesse Kirchner | Hector Fernandez Alcalde | Jana Strnadová | Esha Banerjee | Ruli Manurung | Antonio Stella | Atsuko Shimada | Sookyoung Kwak | Gustavo Mendonça | Tatiana Lando | Rattima Nitisaroj | Josie Li
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, the task was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe how the data sets were prepared, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.

pdf bib
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)
Marie-Catherine de Marneffe | Joakim Nivre | Sebastian Schuster
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)

pdf bib
Gapping Constructions in Universal Dependencies v2
Sebastian Schuster | Matthew Lamm | Christopher D. Manning
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)

2016

pdf bib
Enhanced English Universal Dependencies: An Improved Representation for Natural Language Understanding Tasks
Sebastian Schuster | Christopher D. Manning
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Many shallow natural language understanding tasks use dependency trees to extract relations between content words. However, strict surface-structure dependency trees tend to follow the linguistic structure of sentences too closely and frequently fail to provide direct relations between content words. To mitigate this problem, the original Stanford Dependencies representation also defines two dependency graph representations which contain additional and augmented relations that explicitly capture otherwise implicit relations between content words. In this paper, we revisit and extend these dependency graph representations in light of the recent Universal Dependencies (UD) initiative and provide a detailed account of an enhanced and an enhanced++ English UD representation. We further present a converter from constituency to basic, i.e., strict surface structure, UD trees, and a converter from basic UD trees to enhanced and enhanced++ English UD graphs. We release both converters as part of Stanford CoreNLP and the Stanford Parser.

2015

pdf bib
Generating Semantically Precise Scene Graphs from Textual Descriptions for Improved Image Retrieval
Sebastian Schuster | Ranjay Krishna | Angel Chang | Li Fei-Fei | Christopher D. Manning
Proceedings of the Fourth Workshop on Vision and Language

2014

pdf bib
Stanford University’s Submissions to the WMT 2014 Translation Task
Julia Neidert | Sebastian Schuster | Spence Green | Kenneth Heafield | Christopher Manning
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
Human Effort and Machine Learnability in Computer Aided Translation
Spence Green | Sida I. Wang | Jason Chuang | Jeffrey Heer | Sebastian Schuster | Christopher D. Manning
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Search
Co-authors
Venues