Sedrick Keh


2024

pdf bib
Asking More Informative Questions for Grounded Retrieval
Sedrick Keh | Justin Chiu | Daniel Fried
Findings of the Association for Computational Linguistics: NAACL 2024

When a model is trying to gather information in an interactive setting, it benefits from asking informative questions. However, in the case of a grounded multi-turn image identification task, previous studies have been constrained to polar yes/no questions (White et al., 2021), limiting how much information the model can gain in a single turn. We present an approach that formulates more informative, open-ended questions. In doing so, we discover that off-the-shelf visual question answering (VQA) models often make presupposition errors, which standard information gain question selection methods fail to account for. To address this issue, we propose a method that can incorporate presupposition handling into both question selection and belief updates. Specifically, we use a two-stage process, where the model first filters out images which are irrelevant to a given question, then updates its beliefs about which image the user intends. Through self-play and human evaluations, we show that our method is successful in asking informative open-ended questions, increasing accuracy over the past state-of-the-art by 14%, while resulting in 48% more efficient games in human evaluations.

2023

pdf bib
Doolittle: Benchmarks and Corpora for Academic Writing Formalization
Shizhe Diao | Yongyu Lei | Liangming Pan | Tianqing Fang | Wangchunshu Zhou | Sedrick Keh | Min-Yen Kan | Tong Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Improving the quality of academic writing is a meaningful but challenging task. Conventional methods of language refinement focus on narrow, specific linguistic features within isolated sentences, such as grammatical errors and improper word use. We propose a more general task, Academic Writing Formalization (AWF), to improve the overall quality of formal academic writing at the paragraph level. We formulate this language refinement task as a formal text style transfer task which transfers informal-academic text to formal-academic and contribute a large-scale non-parallel dataset, Doolittle, for this purpose. Concurrently, we apply a method named metric-oriented reinforcement learning (MORL) to two large language models (LLM) where we incorporate different levels of automatic feedback into the training process. Our experiments reveal that existing text transfer models and grammatical error correction models address certain aspects of AWF but still have a significant performance gap compared to human performance. Meanwhile, language models fine-tuned with our MORL method exhibit considerably improved performance, rivaling the latest chatbot ChatGPT, but still have a non-negligible gap compared to the ground truth formal-academic texts in Doolittle.