See Kiong Ng

Also published as: See-Kiong Ng


2024

pdf bib
Video-Language Understanding: A Survey from Model Architecture, Model Training, and Data Perspectives
Thong Nguyen | Yi Bin | Junbin Xiao | Leigang Qu | Yicong Li | Jay Zhangjie Wu | Cong-Duy Nguyen | See-Kiong Ng | Anh Tuan Luu
Findings of the Association for Computational Linguistics ACL 2024

Humans use multiple senses to comprehend the environment. Vision and language are two of the most vital senses since they allow us to easily communicate our thoughts and perceive the world around us. There has been a lot of interest in creating video-language understanding systems with human-like senses since a video-language pair can mimic both our linguistic medium and visual environment with temporal dynamics. In this survey, we review the key tasks of these systems and highlight the associated challenges. Based on the challenges, we summarize their methods from model architecture, model training, and data perspectives. We also conduct performance comparison among the methods, and discuss promising directions for future research.

pdf bib
GPTScore: Evaluate as You Desire
Jinlan Fu | See-Kiong Ng | Zhengbao Jiang | Pengfei Liu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Generative Artificial Intelligence (AI) has enabled the development of sophisticated models that are capable of producing high-caliber text, images, and other outputs through the utilization of large pre-trained models.Nevertheless, assessing the quality of the generation is an even more arduous task than the generation itself, and this issue has not been given adequate consideration recently.This paper proposes a novel evaluation framework, GPTScore, which utilizes the emergent abilities (e.g., in-context learning, zero-shot instruction) of generative pre-trained models to score generated texts. There are 19 pre-trained models explored in this paper, ranging in size from 80M (e.g., Flan-T5-small) to 175B (e.g., GPT3).Experimental results on four text generation tasks, 22 evaluation aspects, and corresponding 37 datasets demonstrate that this approach can effectively allow us to achieve what one desires to evaluate for texts simply by natural language instructions.This nature helps us overcome several long-standing challenges in text evaluation–how to achieve customized, multi-faceted evaluation without model training. We make our code publicly available.

pdf bib
SemRoDe: Macro Adversarial Training to Learn Representations that are Robust to Word-Level Attacks
Brian Formento | Wenjie Feng | Chuan-Sheng Foo | Anh Tuan Luu | See-Kiong Ng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Language models (LMs) are indispensable tools for natural language processing tasks, but their vulnerability to adversarial attacks remains a concern. While current research has explored adversarial training techniques, their improvements to defend against word-level attacks have been limited. In this work, we propose a novel approach called Semantic Robust Defence (SemRoDe), a Macro Adversarial Training strategy to enhance the robustness of LMs. Drawing inspiration from recent studies in the image domain, we investigate and later confirm that in a discrete data setting such as language, adversarial samples generated via word substitutions do indeed belong to an adversarial domain exhibiting a high Wasserstein distance from the base domain. Our method learns a robust representation that bridges these two domains. We hypothesize that if samples were not projected into an adversarial domain, but instead to a domain with minimal shift, it would improve attack robustness. We align the domains by incorporating a new distance-based objective. With this, our model is able to learn more generalized representations by aligning the model’s high-level output features and therefore better handling unseen adversarial samples. This method can be generalized across word embeddings, even when they share minimal overlap at both vocabulary and word-substitution levels. To evaluate the effectiveness of our approach, we conduct experiments on BERT and RoBERTa models on three datasets. The results demonstrate promising state-of-the-art robustness.

pdf bib
A Comprehensive Survey of Sentence Representations: From the BERT Epoch to the CHATGPT Era and Beyond
Abhinav Ramesh Kashyap | Thanh-Tung Nguyen | Viktor Schlegel | Stefan Winkler | See-Kiong Ng | Soujanya Poria
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Sentence representations are a critical component in NLP applications such as retrieval, question answering, and text classification. They capture the meaning of a sentence, enabling machines to understand and reason over human language. In recent years, significant progress has been made in developing methods for learning sentence representations, including unsupervised, supervised, and transfer learning approaches. However there is no literature review on sentence representations till now. In this paper, we provide an overview of the different methods for sentence representation learning, focusing mostly on deep learning models. We provide a systematic organization of the literature, highlighting the key contributions and challenges in this area. Overall, our review highlights the importance of this area in natural language processing, the progress made in sentence representation learning, and the challenges that remain. We conclude with directions for future research, suggesting potential avenues for improving the quality and efficiency of sentence representations.

pdf bib
Chain-of-Exemplar: Enhancing Distractor Generation for Multimodal Educational Question Generation
Haohao Luo | Yang Deng | Ying Shen | See-Kiong Ng | Tat-Seng Chua
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multiple-choice questions (MCQs) are important in enhancing concept learning and student engagement for educational purposes. Despite the multimodal nature of educational content, current methods focus mainly on text-based inputs and often neglect the integration of visual information. In this work, we study the problem of multimodal educational question generation, which aims at generating subject-specific educational questions with plausible yet incorrect distractors based on multimodal educational content. To tackle this problem, we introduce a novel framework, named Chain-of-Exemplar (CoE), which utilizes multimodal large language models (MLLMs) with Chain-of-Thought reasoning to improve the generation of challenging distractors. Furthermore, CoE leverages three-stage contextualized exemplar retrieval to retrieve exemplary questions as guides for generating more subject-specific educational questions. Experimental results on the ScienceQA benchmark demonstrate the superiority of CoE in both question generation and distractor generation over existing methods across various subjects and educational levels.

pdf bib
On the Multi-turn Instruction Following for Conversational Web Agents
Yang Deng | Xuan Zhang | Wenxuan Zhang | Yifei Yuan | See-Kiong Ng | Tat-Seng Chua
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Web agents powered by Large Language Models (LLMs) have demonstrated remarkable abilities in planning and executing multi-step interactions within complex web-based environments, fulfilling a wide range of web navigation tasks. Despite these advancements, the potential for LLM-powered agents to effectively engage with sequential user instructions in real-world scenarios has not been fully explored. In this work, we introduce a new task of Conversational Web Navigation, which necessitates sophisticated interactions that span multiple turns with both the users and the environment, supported by a specially developed dataset named Multi-Turn Mind2Web (MT-Mind2Web). To tackle the limited context length of LLMs and the context-dependency issue of the conversational tasks, we further propose a novel framework, named self-reflective memory-augmented planning (Self-MAP), which employs memory utilization and self-reflection techniques. Extensive experiments are conducted to benchmark the MT-Mind2Web dataset, and validate the effectiveness of the proposed method.

2023

pdf bib
Using Punctuation as an Adversarial Attack on Deep Learning-Based NLP Systems: An Empirical Study
Brian Formento | Chuan Sheng Foo | Luu Anh Tuan | See Kiong Ng
Findings of the Association for Computational Linguistics: EACL 2023

This work empirically investigates punctuation insertions as adversarial attacks on NLP systems. Data from experiments on three tasks, five datasets, and six models with four attacks show that punctuation insertions, when limited to a few symbols (apostrophes and hyphens), are a superior attack vector compared to character insertions due to 1) a lower after-attack accuracy (Aaft-atk) than alphabetical character insertions; 2) higher semantic similarity between the resulting and original texts; and 3) a resulting text that is easier and faster to read as assessed with the Test of Word Reading Efficiency (TOWRE)). The tests also indicate that 4) grammar checking does not mitigate punctuation insertions and 5) punctuation insertions outperform word-level attacks in settings with a limited number of word synonyms and queries to the victim’s model. Our findings indicate that inserting a few punctuation types that result in easy-to-read samples is a general attack mechanism. In light of this threat, we assess the impact of punctuation insertions, potential mitigations, the mitigation’s tradeoffs, punctuation insertion’s worst-case scenarios and summarize our findings in a qualitative casual map, so that developers can design safer, more secure systems.

pdf bib
DemaFormer: Damped Exponential Moving Average Transformer with Energy-Based Modeling for Temporal Language Grounding
Thong Nguyen | Xiaobao Wu | Xinshuai Dong | Cong-Duy Nguyen | See-Kiong Ng | Anh Luu
Findings of the Association for Computational Linguistics: EMNLP 2023

Temporal Language Grounding seeks to localize video moments that semantically correspond to a natural language query. Recent advances employ the attention mechanism to learn the relations between video moments and the text query. However, naive attention might not be able to appropriately capture such relations, resulting in ineffective distributions where target video moments are difficult to separate from the remaining ones. To resolve the issue, we propose an energy-based model framework to explicitly learn moment-query distributions. Moreover, we propose DemaFormer, a novel Transformer-based architecture that utilizes exponential moving average with a learnable damping factor to effectively encode moment-query inputs. Comprehensive experiments on four public temporal language grounding datasets showcase the superiority of our methods over the state-of-the-art baselines.

pdf bib
Identifying Early Maladaptive Schemas from Mental Health Question Texts
Sujatha Gollapalli | Beng Ang | See-Kiong Ng
Findings of the Association for Computational Linguistics: EMNLP 2023

In Psychotherapy, maladaptive schemas– negative perceptions that an individual has of the self, others, or the world that endure despite objective reality–often lead to resistance to treatments and relapse of mental health issues such as depression, anxiety, panic attacks etc. Identification of early maladaptive schemas (EMS) is thus a crucial step during Schema Therapy-based counseling sessions, where patients go through a detailed and lengthy EMS questionnaire. However, such an approach is not practical in ‘offline’ counseling scenarios, such as community QA forums which are gaining popularity for people seeking mental health support. In this paper, we investigate both LLM (Large Language Models) and non-LLM approaches for identifying EMS labels using resources from Schema Therapy. Our evaluation indicates that recent LLMs can be effective for identifying EMS but their predictions lack explainability and are too sensitive to precise ‘prompts’. Both LLM and non-LLM methods are unable to reliably address the null cases, i.e. cases with no EMS labels. However, we posit that the two approaches show complementary properties and together, they can be used to further devise techniques for EMS identification.

pdf bib
Non-Autoregressive Math Word Problem Solver with Unified Tree Structure
Yi Bin | Mengqun Han | Wenhao Shi | Lei Wang | Yang Yang | See-Kiong Ng | Heng Shen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Existing MWP solvers employ sequence or binary tree to present the solution expression and decode it from given problem description. However, such structures fail to handle the variants that can be derived via mathematical manipulation, e.g., (a1+a2)*a3 and a1 * a3+a2 * a3 can both be possible valid solutions for a same problem but formulated as different expression sequences or trees. The multiple solution variants depicting different possible solving procedures for the same input problem would raise two issues: 1) making it hard for the model to learn the mapping function between the input and output spaces effectively, and 2) wrongly indicating wrong when evaluating a valid expression variant. To address these issues, we introduce a unified tree structure to present a solution expression, where the elements are permutable and identical for all the expression variants. We propose a novel non-autoregressive solver, named MWP-NAS, to parse the problem and deduce the solution expression based on the unified tree. For evaluating the possible expression variants, we design a path-based metric to evaluate the partial accuracy of expressions of a unified tree. The results from extensive experiments conducted on Math23K and MAWPS demonstrate the effectiveness of our proposed MWP-NAS. The codes and checkpoints are available at: https://github.com/mengqunhan/MWP-NAS.

pdf bib
Socratic Question Generation: A Novel Dataset, Models, and Evaluation
Beng Heng Ang | Sujatha Das Gollapalli | See-Kiong Ng
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Socratic questioning is a form of reflective inquiry often employed in education to encourage critical thinking in students, and to elicit awareness of beliefs and perspectives in a subject during therapeutic counseling. Specific types of Socratic questions are employed for enabling reasoning and alternate views against the context of individual personal opinions on a topic. Socratic contexts are different from traditional question generation contexts where “answer-seeking” questions are generated against a given formal passage on a topic, narrative stories or conversations. We present SocratiQ, the first large dataset of 110K (question, context) pairs for enabling studies on Socratic Question Generation (SoQG). We provide an in-depth study on the various types of Socratic questions and present models for generating Socratic questions against a given context through prompt tuning. Our automated and human evaluation results demonstrate that our SoQG models can produce realistic, type-sensitive, human-like Socratic questions enabling potential applications in counseling and coaching.

pdf bib
RECESS: Resource for Extracting Cause, Effect, and Signal Spans
Fiona Anting Tan | Hansi Hettiarachchi | Ali Hürriyetoğlu | Nelleke Oostdijk | Tommaso Caselli | Tadashi Nomoto | Onur Uca | Farhana Ferdousi Liza | See-Kiong Ng
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
NUS-IDS at PragTag-2023: Improving Pragmatic Tagging of Peer Reviews through Unlabeled Data
Sujatha Das Gollapalli | Yixin Huang | See-Kiong Ng
Proceedings of the 10th Workshop on Argument Mining

We describe our models for the Pragmatic Tagging of Peer Reviews Shared Task at the 10th Workshop on Argument Mining at EMNLP-2023. We trained multiple sentence classification models for the above competition task by employing various state-of-the-art transformer models that can be fine-tuned either in the traditional way or through instruction-based fine-tuning. Multiple model predictions on unlabeled data are combined to tentatively label unlabeled instances and augment the dataset to further improve performance on the prediction task. In particular, on the F1000RD corpus, we perform on-par with models trained on 100% of the training data while using only 10% of the data. Overall, on the competition datasets, we rank among the top-2 performers for the different data conditions.

2022

pdf bib
Are All the Datasets in Benchmark Necessary? A Pilot Study of Dataset Evaluation for Text Classification
Yang Xiao | Jinlan Fu | See-Kiong Ng | Pengfei Liu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In this paper, we ask the research question of whether all the datasets in the benchmark are necessary. We approach this by first characterizing the distinguishability of datasets when comparing different systems. Experiments on 9 datasets and 36 systems show that several existing benchmark datasets contribute little to discriminating top-scoring systems, while those less used datasets exhibit impressive discriminative power. We further, taking the text classification task as a case study, investigate the possibility of predicting dataset discrimination based on its properties (e.g., average sentence length). Our preliminary experiments promisingly show that given a sufficient number of training experimental records, a meaningful predictor can be learned to estimate dataset discrimination over unseen datasets. We released all datasets with features explored in this work on DataLab.

pdf bib
Polyglot Prompt: Multilingual Multitask Prompt Training
Jinlan Fu | See-Kiong Ng | Pengfei Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

This paper aims for a potential architectural improvement for multilingual learning and asks: Can different tasks from different languages be modeled in a monolithic framework, i.e. without any task/language-specific module? The benefit of achieving this could open new doors for future multilingual research, including allowing systems trained on low resources to be further assisted by other languages as well as other tasks. We approach this goal by developing a learning framework named Polyglot Prompting to exploit prompting methods for learning a unified semantic space for different languages and tasks with multilingual prompt engineering. We performed a comprehensive evaluation of 6 tasks, namely topic classification, sentiment classification, named entity recognition, question answering, natural language inference, and summarization, covering 24 datasets and 49 languages. The experimental results demonstrated the efficacy of multilingual multitask prompt-based learning and led to inspiring observations. We also present an interpretable multilingual evaluation methodology and show how the proposed framework, multilingual multitask prompt training, works. We release all datasets prompted in the best setting and code.

pdf bib
CorefDiffs: Co-referential and Differential Knowledge Flow in Document Grounded Conversations
Lin Xu | Qixian Zhou | Jinlan Fu | Min-Yen Kan | See-Kiong Ng
Proceedings of the 29th International Conference on Computational Linguistics

Knowledge-grounded dialog systems need to incorporate smooth transitions among knowledge selected for generating responses, to ensure that dialog flows naturally. For document-grounded dialog systems, the inter- and intra-document knowledge relations can be used to model such conversational flows. We develop a novel Multi-Document Co-Referential Graph (Coref-MDG) to effectively capture the inter-document relationships based on commonsense and similarity and the intra-document co-referential structures of knowledge segments within the grounding documents. We propose CorefDiffs, a Co-referential and Differential flow management method, to linearize the static Coref-MDG into conversational sequence logic. CorefDiffs performs knowledge selection by accounting for contextual graph structures and the knowledge difference sequences. CorefDiffs significantly outperforms the state-of-the-art by 9.5%, 7.4% and 8.2% on three public benchmarks. This demonstrates that the effective modeling of co-reference and knowledge difference for dialog flows are critical for transitions in document-grounded conversation.

pdf bib
QSTS: A Question-Sensitive Text Similarity Measure for Question Generation
Sujatha Das Gollapalli | See-Kiong Ng
Proceedings of the 29th International Conference on Computational Linguistics

While question generation (QG) has received significant focus in conversation modeling and text generation research, the problems of comparing questions and evaluation of QG models have remained inadequately addressed. Indeed, QG models continue to be evaluated using traditional measures such as BLEU, METEOR, and ROUGE scores which were designed for other text generation problems. We propose QSTS, a novel Question-Sensitive Text Similarity measure for comparing two questions by characterizing their target intent based on question class, named-entity, and semantic similarity information from the two questions. We show that QSTS addresses several shortcomings of existing measures that depend on n-gram overlap scores and obtains superior results compared to traditional measures on publicly-available QG datasets. We also collect a novel dataset SimQG, for enabling question similarity research in QG contexts. SimQG contains questions generated by state-of-the-art QG models along with human judgements on their relevance with respect to the passage context they were generated for as well as when compared to the given reference question. Using SimQG, we showcase the key aspect of QSTS that differentiates it from all existing measures. QSTS is not only able to characterize similarity between two questions, but is also able to score questions with respect to passage contexts. Thus QSTS is, to our knowledge, the first metric that enables the measurement of QG performance in a reference-free manner.

2021

pdf bib
NUS-IDS at FinCausal 2021: Dependency Tree in Graph Neural Network for Better Cause-Effect Span Detection
Fiona Anting Tan | See-Kiong Ng
Proceedings of the 3rd Financial Narrative Processing Workshop

pdf bib
On Generating Fact-Infused Question Variations
Arthur Deschamps | Sujatha Das Gollapalli | See-Kiong Ng
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

To fully model human-like ability to ask questions, automatic question generation (QG) models must be able to produce multiple expressions of the same question with different levels of detail. Unfortunately, existing datasets available for learning QG do not include paraphrases or question variations affecting a model’s ability to learn this capability. We present FIRS, a dataset containing human-generated fact-infused rewrites of questions from the widely-used SQuAD dataset to address this limitation. Questions in FIRS were obtained by combining a given question with facts of entities referenced in the question. We study a double encoder-decoder model, Fact-Infused Question Generator (FIQG), for learning to generate fact-infused questions from a given question. Experimental results show that FIQG effectively incorporates information from facts to add more detail to a given question. To the best of our knowledge, ours is the first study to present fact-infusion as a novel form of question paraphrasing.

pdf bib
NUS-IDS at CASE 2021 Task 1: Improving Multilingual Event Sentence Coreference Identification With Linguistic Information
Fiona Anting Tan | Sujatha Das Gollapalli | See-Kiong Ng
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

Event Sentence Coreference Identification (ESCI) aims to cluster event sentences that refer to the same event together for information extraction. We describe our ESCI solution developed for the ACL-CASE 2021 shared tasks on the detection and classification of socio-political and crisis event information in a multilingual setting. For a given article, our proposed pipeline comprises of an accurate sentence pair classifier that identifies coreferent sentence pairs and subsequently uses these predicted probabilities to cluster sentences into groups. Sentence pair representations are constructed from fine-tuned BERT embeddings plus POS embeddings fed through a BiLSTM model, and combined with linguistic-based lexical and semantic similarities between sentences. Our best models ranked 2nd, 1st and 2nd and obtained CoNLL F1 scores of 81.20%, 93.03%, 83.15% for the English, Portuguese and Spanish test sets respectively in the ACL-CASE 2021 competition.

pdf bib
Causal Augmentation for Causal Sentence Classification
Fiona Anting Tan | Devamanyu Hazarika | See-Kiong Ng | Soujanya Poria | Roger Zimmermann
Proceedings of the First Workshop on Causal Inference and NLP

Scarcity of annotated causal texts leads to poor robustness when training state-of-the-art language models for causal sentence classification. In particular, we found that models misclassify on augmented sentences that have been negated or strengthened with respect to its causal meaning. This is worrying since minor linguistic differences in causal sentences can have disparate meanings. Therefore, we propose the generation of counterfactual causal sentences by creating contrast sets (Gardner et al., 2020) to be included during model training. We experimented on two model architectures and predicted on two out-of-domain corpora. While our strengthening schemes proved useful in improving model performance, for negation, regular edits were insufficient. Thus, we also introduce heuristics like shortening or multiplying root words of a sentence. By including a mixture of edits when training, we achieved performance improvements beyond the baseline across both models, and within and out of corpus’ domain, suggesting that our proposed augmentation can also help models generalize.

pdf bib
Suicide Risk Prediction by Tracking Self-Harm Aspects in Tweets: NUS-IDS at the CLPsych 2021 Shared Task
Sujatha Das Gollapalli | Guilherme Augusto Zagatti | See-Kiong Ng
Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access

We describe our system for identifying users at-risk for suicide based on their tweets developed for the CLPsych 2021 Shared Task. Based on research in mental health studies linking self-harm tendencies with suicide, in our system, we attempt to characterize self-harm aspects expressed in user tweets over a period of time. To this end, we design SHTM, a Self-Harm Topic Model that combines Latent Dirichlet Allocation with a self-harm dictionary for modeling daily tweets of users. Next, differences in moods and topics over time are captured as features to train a deep learning model for suicide prediction.

2020

pdf bib
ESTeR: Combining Word Co-occurrences and Word Associations for Unsupervised Emotion Detection
Sujatha Das Gollapalli | Polina Rozenshtein | See-Kiong Ng
Findings of the Association for Computational Linguistics: EMNLP 2020

Accurate detection of emotions in user- generated text was shown to have several applications for e-commerce, public well-being, and disaster management. Currently, the state-of-the-art performance for emotion detection in text is obtained using complex, deep learning models trained on domain-specific, labeled data. In this paper, we propose ESTeR , an unsupervised model for identifying emotions using a novel similarity function based on random walks on graphs. Our model combines large-scale word co-occurrence information with word-associations from lexicons avoiding not only the dependence on labeled datasets, but also an explicit mapping of words to latent spaces used in emotion-enriched word embeddings. Our similarity function can also be computed efficiently. We study a range of datasets including recent tweets related to COVID-19 to illustrate the superior performance of our model and report insights on public emotions during the on-going pandemic.

2016

pdf bib
Learning Term Embeddings for Taxonomic Relation Identification Using Dynamic Weighting Neural Network
Anh Tuan Luu | Yi Tay | Siu Cheung Hui | See Kiong Ng
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Utilizing Temporal Information for Taxonomy Construction
Luu Anh Tuan | Siu Cheung Hui | See Kiong Ng
Transactions of the Association for Computational Linguistics, Volume 4

Taxonomies play an important role in many applications by organizing domain knowledge into a hierarchy of ‘is-a’ relations between terms. Previous work on automatic construction of taxonomies from text documents either ignored temporal information or used fixed time periods to discretize the time series of documents. In this paper, we propose a time-aware method to automatically construct and effectively maintain a taxonomy from a given series of documents preclustered for a domain of interest. The method extracts temporal information from the documents and uses a timestamp contribution function to score the temporal relevance of the evidence from source texts when identifying the taxonomic relations for constructing the taxonomy. Experimental results show that our proposed method outperforms the state-of-the-art methods by increasing F-measure up to 7%–20%. Furthermore, the proposed method can incrementally update the taxonomy by adding fresh relations from new data and removing outdated relations using an information decay function. It thus avoids rebuilding the whole taxonomy from scratch for every update and keeps the taxonomy effectively up-to-date in order to track the latest information trends in the rapidly evolving domain.

2015

pdf bib
Incorporating Trustiness and Collective Synonym/Contrastive Evidence into Taxonomy Construction
Anh Tuan Luu | Jung-jae Kim | See Kiong Ng
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf bib
Taxonomy Construction Using Syntactic Contextual Evidence
Anh Tuan Luu | Jung-jae Kim | See Kiong Ng
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2010

pdf bib
Distributional Similarity vs. PU Learning for Entity Set Expansion
Xiao-Li Li | Lei Zhang | Bing Liu | See-Kiong Ng
Proceedings of the ACL 2010 Conference Short Papers

pdf bib
Negative Training Data Can be Harmful to Text Classification
Xiao-Li Li | Bing Liu | See-Kiong Ng
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

1991

pdf bib
Probabilistic LR Parsing for General Context-Free Grammars
See-Kiong Ng | Masaru Tomita
Proceedings of the Second International Workshop on Parsing Technologies

To combine the advantages of probabilistic grammars and generalized LR parsing, an algorithm for constructing a probabilistic LR parser given a probabilistic context-free grammar is needed. In this paper, implementation issues in adapting Tomita’s generalized LR parser with graph-structured stack to perform probabilistic parsing are discussed. Wright and Wrigley (1989) has proposed a probabilistic LR-table construction algorithm for non-left-recursive context-free grammars. To account for left recursions, a method for computing item probabilities using the generation of systems of linear equations is presented. The notion of deferred probabilities is proposed as a means for dealing with similar item sets with differing probability assignments.