Semih Yavuz


2024

pdf bib
Unlocking Anticipatory Text Generation: A Constrained Approach for Large Language Models Decoding
Lifu Tu | Semih Yavuz | Jin Qu | Jiacheng Xu | Rui Meng | Caiming Xiong | Yingbo Zhou
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).

pdf bib
FOLIO: Natural Language Reasoning with First-Order Logic
Simeng Han | Hailey Schoelkopf | Yilun Zhao | Zhenting Qi | Martin Riddell | Wenfei Zhou | James Coady | David Peng | Yujie Qiao | Luke Benson | Lucy Sun | Alexander Wardle-Solano | Hannah Szabó | Ekaterina Zubova | Matthew Burtell | Jonathan Fan | Yixin Liu | Brian Wong | Malcolm Sailor | Ansong Ni | Linyong Nan | Jungo Kasai | Tao Yu | Rui Zhang | Alexander Fabbri | Wojciech Maciej Kryscinski | Semih Yavuz | Ye Liu | Xi Victoria Lin | Shafiq Joty | Yingbo Zhou | Caiming Xiong | Rex Ying | Arman Cohan | Dragomir Radev
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have achieved remarkable performance on a variety of natural language understanding tasks. However, existing benchmarks are inadequate in measuring the complex logical reasoning capabilities of a model. We present FOLIO, a human-annotated, logically complex and diverse dataset for reasoning in natural language (NL), equipped with first-order logic (FOL) annotations. FOLIO consists of 1,430 examples (unique conclusions), each paired with one of 487 sets of premises used to deductively reason for the validity of each conclusion. The logical correctness of the premises and conclusions is ensured by their FOL annotations, which are automatically verified by an FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO constitute a new NL-FOL translation dataset. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models. For both NL reasoning and NL-FOL translation, we benchmark multiple state-of-the-art language models. Our results show that a subset of FOLIO remains a challenge for one of the most capable Large Language Model (LLM) publicly available, GPT-4.

pdf bib
Efficiently Aligned Cross-Lingual Transfer Learning for Conversational Tasks using Prompt-Tuning
Lifu Tu | Jin Qu | Semih Yavuz | Shafiq Joty | Wenhao Liu | Caiming Xiong | Yingbo Zhou
Findings of the Association for Computational Linguistics: EACL 2024

Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks, but focus on conversational tasks has been rather limited. This is partly due to the high cost of obtaining non-English conversational data, which results in limited coverage. In this work, we introduce for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset that we created by translating the English-only Schema-Guided Dialogue (SGD) dataset (Rastogi et al., 2020) into 105 other languages. XSGD contains about 330k utterances per language. To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts. We also investigate two different classifiers: NLI-based and vanilla classifiers, and test cross-lingual capability enabled by the aligned prompts. We evaluate our model’s cross-lingual generalization capabilities on two conversation tasks: slot-filling and intent classification. Our results demonstrate strong and efficient modeling ability of NLI-based classifiers and the large cross-lingual transfer improvements achieved by our aligned prompts, particularly in few-shot settings. We also conduct studies on large language models (LLMs) such as text-davinci-003 and ChatGPT in both zero- and few-shot settings. While LLMs exhibit impressive performance in English, their cross-lingual capabilities in other languages, particularly low-resource ones, are limited.

pdf bib
DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text
Wenting Zhao | Ye Liu | Tong Niu | Yao Wan | Philip Yu | Shafiq Joty | Yingbo Zhou | Semih Yavuz
Findings of the Association for Computational Linguistics: NAACL 2024

Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when solely relying on their internal knowledge, especially when answering questions that require less commonly known information. Retrievalaugmented LLMs have emerged as a potential solution to ground LLMs in external knowledge. Nonetheless, recent approaches have primarily emphasized retrieval from unstructured text corpora, owing to its seamless integration into prompts. When using structured data such as knowledge graphs, most methods simplify it into natural text, neglecting the underlying structures. Moreover, a significant gap in the current landscape is the absence of a realistic benchmark for evaluating the effectiveness of grounding LLMs on heterogeneous knowledge sources (e.g., knowledge base and text). To fill this gap, we have curated a comprehensive dataset that poses two unique challenges: (1) Two-hop multi-source questions that require retrieving information from both open-domain structured and unstructured knowledge sources; retrieving information from structured knowledge sources is a critical component in correctly answering the questions. (2) Generation of symbolic queries (e.g., SPARQL for Wikidata) is a key requirement, which adds another layer of challenge. Our dataset is created using a combination of automatic generation through predefined reasoning chains and human annotation. We also introduce a novel approach that leverages multiple retrieval tools, including text passage retrieval and symbolic language-assisted retrieval. Our model outperforms previous approaches by a significant margin, demonstrating its effectiveness in addressing the above-mentioned reasoning challenges.

pdf bib
Traffic Light or Light Traffic? Investigating Phrasal Semantics in Large Language Models
Rui Meng | Ye Liu | Lifu Tu | Daqing He | Yingbo Zhou | Semih Yavuz
Findings of the Association for Computational Linguistics: EMNLP 2024

Phrases are fundamental linguistic units through which humans convey semantics. This study critically examines the capacity of API-based large language models (LLMs) to comprehend phrase semantics, utilizing three human-annotated datasets. We assess the performance of LLMs in executing phrase semantic reasoning tasks guided by natural language instructions and explore the impact of common prompting techniques, including few-shot demonstrations and Chain-of-Thought reasoning. Our findings reveal that LLMs greatly outperform traditional embedding methods across the datasets; however, they do not show a significant advantage over fine-tuned methods. The effectiveness of advanced prompting strategies shows variability. We conduct detailed error analyses to interpret the limitations faced by LLMs in comprehending phrase semantics. Code and data can be found at https://github.com/memray/llm_phrase_semantics/.

pdf bib
P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains
Simeng Han | Aaron Yu | Rui Shen | Zhenting Qi | Martin Riddell | Wenfei Zhou | Yujie Qiao | Yilun Zhao | Semih Yavuz | Ye Liu | Shafiq Joty | Yingbo Zhou | Caiming Xiong | Dragomir Radev | Rex Ying | Arman Cohan
Findings of the Association for Computational Linguistics: EMNLP 2024

Existing methods on understanding the capabilities of LLMs in logical reasoning rely on binary entailment classification or synthetically derived rationales, which are not sufficient for properly assessing model’s capabilities. We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains for a set of realistic logical reasoning stories also written by humans. P-FOLIO is collected with an annotation protocol that facilitates humans to annotate well-structured natural language proofs for first-order logic reasoning problems in a step-by-step manner. The number of reasoning steps in P-FOLIO span from 0 to 20. We further use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities. We evaluate LLM reasoning capabilities at a fine granularity via single-step inference rule classification, with more diverse inference rules of more diverse and higher levels of complexities than previous works. Given that a single model-generated reasoning chain could take a completely different path than the human-annotated one, we sample multiple reasoning chains from a model and use pass@k metrics for evaluating the quality of model-generated reasoning chains. We show that human-written reasoning chains significantly boost the logical reasoning capabilities of LLMs via many-shot prompting and fine-tuning. Furthermore, fine-tuning Llam3-7B on P-FOLIO improves the model performance by 10% or more on three other out-of-domain logical reasoning datasets.

pdf bib
Parameter-Efficient Detoxification with Contrastive Decoding
Tong Niu | Caiming Xiong | Yingbo Zhou | Semih Yavuz
Proceedings of the 1st Human-Centered Large Language Modeling Workshop

The field of natural language generation has witnessed significant advancements in recent years, including the development of controllable text generation techniques. However, controlling the attributes of the generated text remains a challenge, especially when aiming to avoid undesirable behavior such as toxicity. In this work, we introduce Detoxification Generator (DETOXIGEN), an inference-time algorithm that steers the generation away from unwanted styles. DETOXIGEN is an ensemble of a pre-trained language model (generator) and a detoxifier. The detoxifier is trained intentionally on the toxic data representative of the undesirable attribute, encouraging it to generate text in that style exclusively. During the actual generation, we use the trained detoxifier to produce undesirable tokens for the generator to contrast against at each decoding step. This approach directly informs the generator to avoid generating tokens that the detoxifier considers highly likely. We evaluate DETOXIGEN on the commonly used REALTOXICITYPROMPTS benchmark (Gehman et al., 2020) with various language models as generators. We find that it significantly outperforms previous approaches in detoxification metrics while not compromising on the generation quality. Moreover, the detoxifier is obtained by soft prompt-tuning using the same backbone language model as the generator. Hence, DETOXIGEN requires only a tiny amount of extra weights from the virtual tokens of the detoxifier to be loaded into GPU memory while decoding, making it a promising lightweight, practical, and parameter-efficient detoxification strategy.

pdf bib
Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs
Ye Liu | Rui Meng | Meghana Moorthy Bhat | Shafiq Joty | Caiming Xiong | Yingbo Zhou | Semih Yavuz
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)

The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating “unknown” outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs. On three open-domain question answering datesets, NQ, TriviaQA and SQuAD, our multi-round approaches outperform traditional concatenation approach, achieving over a 10% improvement in answer EM.

pdf bib
L2CEval: Evaluating Language-to-Code Generation Capabilities of Large Language Models
Ansong Ni | Pengcheng Yin | Yilun Zhao | Martin Riddell | Troy Feng | Rui Shen | Stephen Yin | Ye Liu | Semih Yavuz | Caiming Xiong | Shafiq Joty | Yingbo Zhou | Dragomir Radev | Arman Cohan | Arman Cohan
Transactions of the Association for Computational Linguistics, Volume 12

Recently, large language models (LLMs), especially those that are pretrained on code, have demonstrated strong capabilities in generating programs from natural language inputs. Despite promising results, there is a notable lack of a comprehensive evaluation of these models’ language-to-code generation capabilities. Existing studies often focus on specific tasks, model architectures, or learning paradigms, leading to a fragmented understanding of the overall landscape. In this work, we present L2CEval, a systematic evaluation of the language-to-code generation capabilities of LLMs on 7 tasks across the domain spectrum of semantic parsing, math reasoning, and Python programming, analyzing the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods. In addition, we assess confidence calibration, and conduct human evaluations to identify typical failures across different tasks and models. L2CEval offers a comprehensive understanding of the capabilities and limitations of LLMs in language-to-code generation. We release the evaluation framework1 and all model outputs, hoping to lay the groundwork for further future research. All future evaluations (e.g., LLaMA-3, StarCoder2, etc) will be updated on the project website: https://l2c-eval.github.io/.

2023

pdf bib
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Liyan Tang | Tanya Goyal | Alex Fabbri | Philippe Laban | Jiacheng Xu | Semih Yavuz | Wojciech Kryscinski | Justin Rousseau | Greg Durrett
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems’ outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.

pdf bib
SharPT: Shared Latent Space Prompt Tuning
Bo Pang | Semih Yavuz | Caiming Xiong | Yingbo Zhou
Findings of the Association for Computational Linguistics: EACL 2023

Prompt tuning is an efficient method for adapting large language models, and Soft Prompt Transfer (SPoT) further narrows the gap between prompt tuning and full model tuning by transferring prompts learned from source tasks to target tasks. It is nevertheless difficult and expensive to identify the source task that provides optimal prompts. In this work, we propose to learn a shared latent space which captures a set of basis skills from a mixture of source tasks. Given an instance, its embedding queries the latent space, yielding a basis skill vector. This vector generates soft prompts, via a lightweight prompt generator, which modulates a frozen model. The latent space and prompt transformation are learned end-to-end by training on source tasks. Transfer learning from source tasks to a target task simply amounts to finetuning the prompt generator, accounting for roughly 0.3% parameters of the frozen backbone model, while the shared latent space is also frozen in finetuning. Our approach outperforms prior soft prompt methods by a significant margin on a variety of tasks such as NLI, sentence completion, QA, conference resolution, word sense disambiguation. We also find, on various model scales, our method achieves competitive performance compared to finetuning the full model.

pdf bib
HPE: Answering Complex Questions over Text by Hybrid Question Parsing and Execution
Ye Liu | Semih Yavuz | Rui Meng | Dragomir Radev | Caiming Xiong | Shafiq Joty | Yingbo Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023

The dominant paradigm of textual question answering systems is based on end-to-end neural networks, which excels at answering natural language questions but falls short on complex ones. This stands in contrast to the broad adaptation of semantic parsing approaches over structured data sources (e.g., relational database, knowledge graphs), that convert natural language questions to logical forms and execute them with query engines. Towards combining the strengths of neural and symbolic methods, we propose a framework of question parsing and execution on textual QA. It comprises two central pillars: (1) We parse the question of varying complexity into an intermediate representation, named H-expression, which is composed of simple questions as the primitives and symbolic operations representing the relationships among them; (2) To execute the resulting H-expressions, we design a hybrid executor, which integrates the deterministic rules to translate the symbolic operations with a drop-in neural reader network to answer each decomposed simple question. Hence, the proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking. The resulting H-expressions closely guide the execution process, offering higher precision besides better interpretability while still preserving the advantages of the neural readers for resolving its primitive elements. Our extensive experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings, while also effectively exposing its underlying reasoning process.

pdf bib
Few-shot Unified Question Answering: Tuning Models or Prompts?
Srijan Bansal | Semih Yavuz | Bo Pang | Meghana Bhat | Yingbo Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023

Question-answering (QA) tasks often investigate specific question types, knowledge domains, or reasoning skills, leading to specialized models catering to specific categories of QA tasks. While recent research has explored the idea of unified QA models, such models are usually explored for high-resource scenarios and require re-training to extend their capabilities. To overcome these drawbacks, the paper explores the potential of two paradigms of tuning, model, and prompts, for unified QA under a low-resource setting. The paper provides an exhaustive analysis of their applicability using 16 QA datasets, revealing that prompt tuning can perform as well as model tuning in a few-shot setting with a good initialization. The study also shows that parameter-sharing results in superior few-shot performance, simple knowledge transfer techniques for prompt initialization can be effective, and prompt tuning achieves a significant performance boost from pre-training in a low-resource regime. The research offers insights into the advantages and limitations of prompt tuning for unified QA in a few-shot setting, contributing to the development of effective and efficient systems in low-resource scenarios.

2022

pdf bib
Modeling Multi-hop Question Answering as Single Sequence Prediction
Semih Yavuz | Kazuma Hashimoto | Yingbo Zhou | Nitish Shirish Keskar | Caiming Xiong
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fusion-in-decoder (Fid) (Izacard and Grave, 2020) is a generative question answering (QA) model that leverages passage retrieval with a pre-trained transformer and pushed the state of the art on single-hop QA. However, the complexity of multi-hop QA hinders the effectiveness of the generative QA approach. In this work, we propose a simple generative approach (PathFid) that extends the task beyond just answer generation by explicitly modeling the reasoning process to resolve the answer for multi-hop questions. By linearizing the hierarchical reasoning path of supporting passages, their key sentences, and finally the factoid answer, we cast the problem as a single sequence prediction task. To facilitate complex reasoning with multiple clues, we further extend the unified flat representation of multiple input documents by encoding cross-passage interactions. Our extensive experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets: HotpotQA and IIRC. Besides the performance gains, PathFid is more interpretable, which in turn yields answers that are more faithfully grounded to the supporting passages and facts compared to the baseline Fid model.

pdf bib
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
Xi Ye | Semih Yavuz | Kazuma Hashimoto | Yingbo Zhou | Caiming Xiong
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing KBQA approaches, despite achieving strong performance on i.i.d. test data, often struggle in generalizing to questions involving unseen KB schema items. Prior ranking-based approaches have shown some success in generalization, but suffer from the coverage issue. We present RnG-KBQA, a Rank-and-Generate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability. Our approach first uses a contrastive ranker to rank a set of candidate logical forms obtained by searching over the knowledge graph. It then introduces a tailored generation model conditioned on the question and the top-ranked candidates to compose the final logical form. We achieve new state-of-the-art results on GrailQA and WebQSP datasets. In particular, our method surpasses the prior state-of-the-art by a large margin on the GrailQA leaderboard. In addition, RnG-KBQA outperforms all prior approaches on the popular WebQSP benchmark, even including the ones that use the oracle entity linking. The experimental results demonstrate the effectiveness of the interplay between ranking and generation, which leads to the superior performance of our proposed approach across all settings with especially strong improvements in zero-shot generalization.

pdf bib
Uni-Parser: Unified Semantic Parser for Question Answering on Knowledge Base and Database
Ye Liu | Semih Yavuz | Rui Meng | Dragomir Radev | Caiming Xiong | Yingbo Zhou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Parsing natural language questions into executable logical forms is a useful and interpretable way to perform question answering on structured data such as knowledge bases (KB) or databases (DB). However, existing approaches on semantic parsing cannot adapt to both modalities, as they suffer from the exponential growth of the logical form candidates and can hardly generalize to unseen data.In this work, we propose Uni-Parser, a unified semantic parser for question answering (QA) on both KB and DB. We define the primitive (relation and entity in KB, and table name, column name and cell value in DB) as the essential element in our framework. The number of primitives grows only at a linear rate to the number of retrieved relations in KB and DB, preventing us from exponential logic form candidates. We leverage the generator to predict final logical forms by altering and composing top-ranked primitives with different operations (e.g. select, where, count). With sufficiently pruned search space by a contrastive primitive ranker, the generator is empowered to capture the composition of primitives enhancing its generalization ability. We achieve competitive results on multiple KB and DB QA benchmarks with more efficiency, especially in the compositional and zero-shot settings.

pdf bib
Improving the Faithfulness of Abstractive Summarization via Entity Coverage Control
Haopeng Zhang | Semih Yavuz | Wojciech Kryscinski | Kazuma Hashimoto | Yingbo Zhou
Findings of the Association for Computational Linguistics: NAACL 2022

Abstractive summarization systems leveraging pre-training language models have achieved superior results on benchmark datasets. However, such models have been shown to be more prone to hallucinate facts that are unfaithful to the input context. In this paper, we propose a method to remedy entity-level extrinsic hallucinations with Entity Coverage Control (ECC). We first compute entity coverage precision and prepend the corresponding control code for each training example, which implicitly guides the model to recognize faithfulness contents in the training phase. We further extend our method via intermediate fine-tuning on large but noisy data extracted from Wikipedia to unlock zero-shot summarization. We show that the proposed method leads to more faithful and salient abstractive summarization in supervised fine-tuning and zero-shot settings according to our experimental results on three benchmark datasets XSum, Pubmed, and SAMSum of very different domains and styles.

pdf bib
Choose Your QA Model Wisely: A Systematic Study of Generative and Extractive Readers for Question Answering
Man Luo | Kazuma Hashimoto | Semih Yavuz | Zhiwei Liu | Chitta Baral | Yingbo Zhou
Proceedings of the 1st Workshop on Semiparametric Methods in NLP: Decoupling Logic from Knowledge

While both extractive and generative readers have been successfully applied to the Question Answering (QA) task, little attention has been paid toward the systematic comparison of them. Characterizing the strengths and weaknesses of the two readers is crucial not only for making a more informed reader selection in practice but also for developing a deeper understanding to foster further research on improving readers in a principled manner. Motivated by this goal, we make the first attempt to systematically study the comparison of extractive and generative readers for question answering. To be aligned with the state-of-the-art, we explore nine transformer-based large pre-trained language models (PrLMs) as backbone architectures. Furthermore, we organize our findings under two main categories: (1) keeping the architecture invariant, and (2) varying the underlying PrLMs. Among several interesting findings, it is important to highlight that (1) the generative readers perform better in long context QA, (2) the extractive readers perform better in short context while also showing better out-of-domain generalization, and (3) the encoder of encoder-decoder PrLMs (e.g., T5) turns out to be a strong extractive reader and outperforms the standard choice of encoder-only PrLMs (e.g., RoBERTa). We also study the effect of multi-task learning on the two types of readers varying the underlying PrLMs and perform qualitative and quantitative diagnosis to provide further insights into future directions in modeling better readers.

2021

pdf bib
Stage-wise Fine-tuning for Graph-to-Text Generation
Qingyun Wang | Semih Yavuz | Xi Victoria Lin | Heng Ji | Nazneen Rajani
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input graph. In this paper, we aim to further improve the performance of the pre-trained language model by proposing a structured graph-to-text model with a two-step fine-tuning mechanism which first fine-tunes model on Wikipedia before adapting to the graph-to-text generation. In addition to using the traditional token and position embeddings to encode the knowledge graph (KG), we propose a novel tree-level embedding method to capture the inter-dependency structures of the input graph. This new approach has significantly improved the performance of all text generation metrics for the English WebNLG 2017 dataset.

pdf bib
Unsupervised Paraphrasing with Pretrained Language Models
Tong Niu | Semih Yavuz | Yingbo Zhou | Nitish Shirish Keskar | Huan Wang | Caiming Xiong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled data that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.

pdf bib
Testing Cross-Database Semantic Parsers With Canonical Utterances
Heather Lent | Semih Yavuz | Tao Yu | Tong Niu | Yingbo Zhou | Dragomir Radev | Xi Victoria Lin
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems

The benchmark performance of cross-database semantic parsing has climbed steadily in recent years, catalyzed by the wide adoption of pre-trained language models. Yet existing work have shown that state-of-the-art cross-database semantic parsers struggle to generalize to novel user utterances, databases and query structures. To obtain transparent details on the strengths and limitation of these models, we propose a diagnostic testing approach based on controlled synthesis of canonical natural language and SQL pairs. Inspired by the CheckList, we characterize a set of essential capabilities for cross-database semantic parsing models, and detailed the method for synthesizing the corresponding test data. We evaluated a variety of high performing models using the proposed approach, and identified several non-obvious weaknesses across models (e.g. unable to correctly select many columns). Our dataset and code are released as a test suite at http://github.com/hclent/BehaviorCheckingSemPar.

pdf bib
Dense Hierarchical Retrieval for Open-domain Question Answering
Ye Liu | Kazuma Hashimoto | Yingbo Zhou | Semih Yavuz | Caiming Xiong | Philip Yu
Findings of the Association for Computational Linguistics: EMNLP 2021

Dense neural text retrieval has achieved promising results on open-domain Question Answering (QA), where latent representations of questions and passages are exploited for maximum inner product search in the retrieval process. However, current dense retrievers require splitting documents into short passages that usually contain local, partial and sometimes biased context, and highly depend on the splitting process. As a consequence, it may yield inaccurate and misleading hidden representations, thus deteriorating the final retrieval result. In this work, we propose Dense Hierarchical Retrieval (DHR), a hierarchical framework which can generate accurate dense representations of passages by utilizing both macroscopic semantics in the document and microscopic semantics specific to each passage. Specifically, a document-level retriever first identifies relevant documents, among which relevant passages are then retrieved by a passage-level retriever. The ranking of the retrieved passages will be further calibrated by examining the document-level relevance. In addition, hierarchical title structure and two negative sampling strategies (i.e., In-Doc and In-Sec negatives) are investigated. We apply DHR to large-scale open-domain QA datasets. DHR significantly outperforms the original dense passage retriever, and helps an end-to-end QA system outperform the strong baselines on multiple open-domain QA benchmarks.

pdf bib
Task-adaptive Pre-training and Self-training are Complementary for Natural Language Understanding
Shiyang Li | Semih Yavuz | Wenhu Chen | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2021

Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, it’s unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.

2020

pdf bib
Simple Data Augmentation with the Mask Token Improves Domain Adaptation for Dialog Act Tagging
Semih Yavuz | Kazuma Hashimoto | Wenhao Liu | Nitish Shirish Keskar | Richard Socher | Caiming Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The concept of Dialogue Act (DA) is universal across different task-oriented dialogue domains - the act of “request” carries the same speaker intention whether it is for restaurant reservation or flight booking. However, DA taggers trained on one domain do not generalize well to other domains, which leaves us with the expensive need for a large amount of annotated data in the target domain. In this work, we investigate how to better adapt DA taggers to desired target domains with only unlabeled data. We propose MaskAugment, a controllable mechanism that augments text input by leveraging the pre-trained Mask token from BERT model. Inspired by consistency regularization, we use MaskAugment to introduce an unsupervised teacher-student learning scheme to examine the domain adaptation of DA taggers. Our extensive experiments on the Simulated Dialogue (GSim) and Schema-Guided Dialogue (SGD) datasets show that MaskAugment is useful in improving the cross-domain generalization for DA tagging.

2019

pdf bib
Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset
Bill Byrne | Karthik Krishnamoorthi | Chinnadhurai Sankar | Arvind Neelakantan | Ben Goodrich | Daniel Duckworth | Semih Yavuz | Amit Dubey | Kyu-Young Kim | Andy Cedilnik
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken “Wizard of Oz” (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is “self-dialog” in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design.

pdf bib
Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
Naveen Arivazhagan | Colin Cherry | Wolfgang Macherey | Chung-Cheng Chiu | Semih Yavuz | Ruoming Pang | Wei Li | Colin Raffel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sentence to balance quality against latency. We present the first simultaneous translation system to learn an adaptive schedule jointly with a neural machine translation (NMT) model that attends over all source tokens read thus far. We do so by introducing Monotonic Infinite Lookback (MILk) attention, which maintains both a hard, monotonic attention head to schedule the reading of the source sentence, and a soft attention head that extends from the monotonic head back to the beginning of the source. We show that MILk’s adaptive schedule allows it to arrive at latency-quality trade-offs that are favorable to those of a recently proposed wait-k strategy for many latency values.

pdf bib
DeepCopy: Grounded Response Generation with Hierarchical Pointer Networks
Semih Yavuz | Abhinav Rastogi | Guan-Lin Chao | Dilek Hakkani-Tur
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Recent advances in neural sequence-to-sequence models have led to promising results for several language generation-based tasks, including dialogue response generation, summarization, and machine translation. However, these models are known to have several problems, especially in the context of chit-chat based dialogue systems: they tend to generate short and dull responses that are often too generic. Furthermore, these models do not ground conversational responses on knowledge and facts, resulting in turns that are not accurate, informative and engaging for the users. In this paper, we propose and experiment with a series of response generation models that aim to serve in the general scenario where in addition to the dialogue context, relevant unstructured external knowledge in the form of text is also assumed to be available for models to harness. Our proposed approach extends pointer-generator networks (See et al., 2017) by allowing the decoder to hierarchically attend and copy from external knowledge in addition to the dialogue context. We empirically show the effectiveness of the proposed model compared to several baselines including (Ghazvininejadet al., 2018; Zhang et al., 2018) through both automatic evaluation metrics and human evaluation on ConvAI2 dataset.

pdf bib
Learning Question-Guided Video Representation for Multi-Turn Video Question Answering
Guan-Lin Chao | Abhinav Rastogi | Semih Yavuz | Dilek Hakkani-Tur | Jindong Chen | Ian Lane
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Understanding and conversing about dynamic scenes is one of the key capabilities of AI agents that navigate the environment and convey useful information to humans. Video question answering is a specific scenario of such AI-human interaction where an agent generates a natural language response to a question regarding the video of a dynamic scene. Incorporating features from multiple modalities, which often provide supplementary information, is one of the challenging aspects of video question answering. Furthermore, a question often concerns only a small segment of the video, hence encoding the entire video sequence using a recurrent neural network is not computationally efficient. Our proposed question-guided video representation module efficiently generates the token-level video summary guided by each word in the question. The learned representations are then fused with the question to generate the answer. Through empirical evaluation on the Audio Visual Scene-aware Dialog (AVSD) dataset, our proposed models in single-turn and multi-turn question answering achieve state-of-the-art performance on several automatic natural language generation evaluation metrics.

2018

pdf bib
What It Takes to Achieve 100% Condition Accuracy on WikiSQL
Semih Yavuz | Izzeddin Gur | Yu Su | Xifeng Yan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

WikiSQL is a newly released dataset for studying the natural language sequence to SQL translation problem. The SQL queries in WikiSQL are simple: Each involves one relation and does not have any join operation. Despite of its simplicity, none of the publicly reported structured query generation models can achieve an accuracy beyond 62%, which is still far from enough for practical use. In this paper, we ask two questions, “Why is the accuracy still low for such simple queries?” and “What does it take to achieve 100% accuracy on WikiSQL?” To limit the scope of our study, we focus on the WHERE clause in SQL. The answers will help us gain insights about the directions we should explore in order to further improve the translation accuracy. We will then investigate alternative solutions to realize the potential ceiling performance on WikiSQL. Our proposed solution can reach up to 88.6% condition accuracy on the WikiSQL dataset.

pdf bib
CaLcs: Continuously Approximating Longest Common Subsequence for Sequence Level Optimization
Semih Yavuz | Chung-Cheng Chiu | Patrick Nguyen | Yonghui Wu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Maximum-likelihood estimation (MLE) is one of the most widely used approaches for training structured prediction models for text-generation based natural language processing applications. However, besides exposure bias, models trained with MLE suffer from wrong objective problem where they are trained to maximize the word-level correct next step prediction, but are evaluated with respect to sequence-level discrete metrics such as ROUGE and BLEU. Several variants of policy-gradient methods address some of these problems by optimizing for final discrete evaluation metrics and showing improvements over MLE training for downstream tasks like text summarization and machine translation. However, policy-gradient methods suffers from high sample variance, making the training process very difficult and unstable. In this paper, we present an alternative direction towards mitigating this problem by introducing a new objective (CaLcs) based on a differentiable surrogate of longest common subsequence (LCS) measure that captures sequence-level structure similarity. Experimental results on abstractive summarization and machine translation validate the effectiveness of the proposed approach.

pdf bib
Global Relation Embedding for Relation Extraction
Yu Su | Honglei Liu | Semih Yavuz | Izzeddin Gür | Huan Sun | Xifeng Yan
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

pdf bib
DialSQL: Dialogue Based Structured Query Generation
Izzeddin Gur | Semih Yavuz | Yu Su | Xifeng Yan
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The recent advance in deep learning and semantic parsing has significantly improved the translation accuracy of natural language questions to structured queries. However, further improvement of the existing approaches turns out to be quite challenging. Rather than solely relying on algorithmic innovations, in this work, we introduce DialSQL, a dialogue-based structured query generation framework that leverages human intelligence to boost the performance of existing algorithms via user interaction. DialSQL is capable of identifying potential errors in a generated SQL query and asking users for validation via simple multi-choice questions. User feedback is then leveraged to revise the query. We design a generic simulator to bootstrap synthetic training dialogues and evaluate the performance of DialSQL on the WikiSQL dataset. Using SQLNet as a black box query generation tool, DialSQL improves its performance from 61.3% to 69.0% using only 2.4 validation questions per dialogue.

2017

pdf bib
Recovering Question Answering Errors via Query Revision
Semih Yavuz | Izzeddin Gur | Yu Su | Xifeng Yan
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The existing factoid QA systems often lack a post-inspection component that can help models recover from their own mistakes. In this work, we propose to crosscheck the corresponding KB relations behind the predicted answers and identify potential inconsistencies. Instead of developing a new model that accepts evidences collected from these relations, we choose to plug them back to the original questions directly and check if the revised question makes sense or not. A bidirectional LSTM is applied to encode revised questions. We develop a scoring mechanism over the revised question encodings to refine the predictions of a base QA system. This approach can improve the F1 score of STAGG (Yih et al., 2015), one of the leading QA systems, from 52.5% to 53.9% on WEBQUESTIONS data.

2016

pdf bib
Improving Semantic Parsing via Answer Type Inference
Semih Yavuz | Izzeddin Gur | Yu Su | Mudhakar Srivatsa | Xifeng Yan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

Search
Co-authors
Fix data