2024
pdf
bib
abs
Cross-lingual Transfer for Automatic Question Generation by Learning Interrogative Structures in Target Languages
Seonjeong Hwang
|
Yunsu Kim
|
Gary Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Automatic question generation (QG) serves a wide range of purposes, such as augmenting question-answering (QA) corpora, enhancing chatbot systems, and developing educational materials. Despite its importance, most existing datasets predominantly focus on English, resulting in a considerable gap in data availability for other languages. Cross-lingual transfer for QG (XLT-QG) addresses this limitation by allowing models trained on high-resource language datasets to generate questions in low-resource languages. In this paper, we propose a simple and efficient XLT-QG method that operates without the need for monolingual, parallel, or labeled data in the target language, utilizing a small language model. Our model, trained solely on English QA datasets, learns interrogative structures from a limited set of question exemplars, which are then applied to generate questions in the target language. Experimental results show that our method outperforms several XLT-QG baselines and achieves performance comparable to GPT-3.5-turbo across different languages. Additionally, the synthetic data generated by our model proves beneficial for training multilingual QA models. With significantly fewer parameters than large language models and without requiring additional training for target languages, our approach offers an effective solution for QG and QA tasks across various languages.
pdf
bib
abs
Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing
Deokhyung Kang
|
Seonjeong Hwang
|
Yunsu Kim
|
Gary Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.
pdf
bib
abs
Explainable Multi-hop Question Generation: An End-to-End Approach without Intermediate Question Labeling
Seonjeong Hwang
|
Yunsu Kim
|
Gary Geunbae Lee
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
In response to the increasing use of interactive artificial intelligence, the demand for the capacity to handle complex questions has increased. Multi-hop question generation aims to generate complex questions that requires multi-step reasoning over several documents. Previous studies have predominantly utilized end-to-end models, wherein questions are decoded based on the representation of context documents. However, these approaches lack the ability to explain the reasoning process behind the generated multi-hop questions. Additionally, the question rewriting approach, which incrementally increases the question complexity, also has limitations due to the requirement of labeling data for intermediate-stage questions. In this paper, we introduce an end-to-end question rewriting model that increases question complexity through sequential rewriting. The proposed model has the advantage of training with only the final multi-hop questions, without intermediate questions. Experimental results demonstrate the effectiveness of our model in generating complex questions, particularly 3- and 4-hop questions, which are appropriately paired with input answers. We also prove that our model logically and incrementally increases the complexity of questions, and the generated multi-hop questions are also beneficial for training question answering models.
2022
pdf
bib
abs
Multi-Type Conversational Question-Answer Generation with Closed-ended and Unanswerable Questions
Seonjeong Hwang
|
Yunsu Kim
|
Gary Geunbae Lee
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Conversational question answering (CQA) facilitates an incremental and interactive understanding of a given context, but building a CQA system is difficult for many domains due to the problem of data scarcity. In this paper, we introduce a novel method to synthesize data for CQA with various question types, including open-ended, closed-ended, and unanswerable questions. We design a different generation flow for each question type and effectively combine them in a single, shared framework. Moreover, we devise a hierarchical answerability classification (hierarchical AC) module that improves quality of the synthetic data while acquiring unanswerable questions. Manual inspections show that synthetic data generated with our framework have characteristics very similar to those of human-generated conversations. Across four domains, CQA systems trained on our synthetic data indeed show good performance close to the systems trained on human-annotated data.
pdf
bib
abs
Conversational QA Dataset Generation with Answer Revision
Seonjeong Hwang
|
Gary Geunbae Lee
Proceedings of the 29th International Conference on Computational Linguistics
Conversational question-answer generation is a task that automatically generates a large-scale conversational question answering dataset based on input passages. In this paper, we introduce a novel framework that extracts question-worthy phrases from a passage and then generates corresponding questions considering previous conversations. In particular, our framework revises the extracted answers after generating questions so that answers exactly match paired questions. Experimental results show that our simple answer revision approach leads to significant improvement in the quality of synthetic data. Moreover, we prove that our framework can be effectively utilized for domain adaptation of conversational question answering.