Sepideh Sadeghi


2021

pdf bib
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Daniel Khashabi | Arman Cohan | Siamak Shakeri | Pedram Hosseini | Pouya Pezeshkpour | Malihe Alikhani | Moin Aminnaseri | Marzieh Bitaab | Faeze Brahman | Sarik Ghazarian | Mozhdeh Gheini | Arman Kabiri | Rabeeh Karimi Mahabagdi | Omid Memarrast | Ahmadreza Mosallanezhad | Erfan Noury | Shahab Raji | Mohammad Sadegh Rasooli | Sepideh Sadeghi | Erfan Sadeqi Azer | Niloofar Safi Samghabadi | Mahsa Shafaei | Saber Sheybani | Ali Tazarv | Yadollah Yaghoobzadeh
Transactions of the Association for Computational Linguistics, Volume 9

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

2018

pdf bib
Sensitivity to Input Order: Evaluation of an Incremental and Memory-Limited Bayesian Cross-Situational Word Learning Model
Sepideh Sadeghi | Matthias Scheutz
Proceedings of the 27th International Conference on Computational Linguistics

We present a variation of the incremental and memory-limited algorithm in (Sadeghi et al., 2017) for Bayesian cross-situational word learning and evaluate the model in terms of its functional performance and its sensitivity to input order. We show that the functional performance of our sub-optimal model on corpus data is close to that of its optimal counterpart (Frank et al., 2009), while only the sub-optimal model is capable of predicting the input order effects reported in experimental studies.