Seraphina Goldfarb-Tarrant


2022

pdf bib
How Gender Debiasing Affects Internal Model Representations, and Why It Matters
Hadas Orgad | Seraphina Goldfarb-Tarrant | Yonatan Belinkov
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Common studies of gender bias in NLP focus either on extrinsic bias measured by model performance on a downstream task or on intrinsic bias found in models’ internal representations. However, the relationship between extrinsic and intrinsic bias is relatively unknown. In this work, we illuminate this relationship by measuring both quantities together: we debias a model during downstream fine-tuning, which reduces extrinsic bias, and measure the effect on intrinsic bias, which is operationalized as bias extractability with information-theoretic probing. Through experiments on two tasks and multiple bias metrics, we show that our intrinsic bias metric is a better indicator of debiasing than (a contextual adaptation of) the standard WEAT metric, and can also expose cases of superficial debiasing. Our framework provides a comprehensive perspective on bias in NLP models, which can be applied to deploy NLP systems in a more informed manner. Our code and model checkpoints are publicly available.

2021

pdf bib
Intrinsic Bias Metrics Do Not Correlate with Application Bias
Seraphina Goldfarb-Tarrant | Rebecca Marchant | Ricardo Muñoz Sánchez | Mugdha Pandya | Adam Lopez
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Natural Language Processing (NLP) systems learn harmful societal biases that cause them to amplify inequality as they are deployed in more and more situations. To guide efforts at debiasing these systems, the NLP community relies on a variety of metrics that quantify bias in models. Some of these metrics are intrinsic, measuring bias in word embedding spaces, and some are extrinsic, measuring bias in downstream tasks that the word embeddings enable. Do these intrinsic and extrinsic metrics correlate with each other? We compare intrinsic and extrinsic metrics across hundreds of trained models covering different tasks and experimental conditions. Our results show no reliable correlation between these metrics that holds in all scenarios across tasks and languages. We urge researchers working on debiasing to focus on extrinsic measures of bias, and to make using these measures more feasible via creation of new challenge sets and annotated test data. To aid this effort, we release code, a new intrinsic metric, and an annotated test set focused on gender bias in hate speech.

2020

pdf bib
Scaling Systematic Literature Reviews with Machine Learning Pipelines
Seraphina Goldfarb-Tarrant | Alexander Robertson | Jasmina Lazic | Theodora Tsouloufi | Louise Donnison | Karen Smyth
Proceedings of the First Workshop on Scholarly Document Processing

Systematic reviews, which entail the extraction of data from large numbers of scientific documents, are an ideal avenue for the application of machine learning. They are vital to many fields of science and philanthropy, but are very time-consuming and require experts. Yet the three main stages of a systematic review are easily done automatically: searching for documents can be done via APIs and scrapers, selection of relevant documents can be done via binary classification, and extraction of data can be done via sequence-labelling classification. Despite the promise of automation for this field, little research exists that examines the various ways to automate each of these tasks. We construct a pipeline that automates each of these aspects, and experiment with many human-time vs. system quality trade-offs. We test the ability of classifiers to work well on small amounts of data and to generalise to data from countries not represented in the training data. We test different types of data extraction with varying difficulty in annotation, and five different neural architectures to do the extraction. We find that we can get surprising accuracy and generalisability of the whole pipeline system with only 2 weeks of human-expert annotation, which is only 15% of the time it takes to do the whole review manually and can be repeated and extended to new data with no additional effort.

pdf bib
Content Planning for Neural Story Generation with Aristotelian Rescoring
Seraphina Goldfarb-Tarrant | Tuhin Chakrabarty | Ralph Weischedel | Nanyun Peng
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Long-form narrative text generated from large language models manages a fluent impersonation of human writing, but only at the local sentence level, and lacks structure or global cohesion. We posit that many of the problems of story generation can be addressed via high-quality content planning, and present a system that focuses on how to learn good plot structures to guide story generation. We utilize a plot-generation language model along with an ensemble of rescoring models that each implement an aspect of good story-writing as detailed in Aristotle’s Poetics. We find that stories written with our more principled plot-structure are both more relevant to a given prompt and higher quality than baselines that do not content plan, or that plan in an unprincipled way.

2019

pdf bib
Plan, Write, and Revise: an Interactive System for Open-Domain Story Generation
Seraphina Goldfarb-Tarrant | Haining Feng | Nanyun Peng
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Story composition is a challenging problem for machines and even for humans. We present a neural narrative generation system that interacts with humans to generate stories. Our system has different levels of human interaction, which enables us to understand at what stage of story-writing human collaboration is most productive, both to improving story quality and human engagement in the writing process. We compare different varieties of interaction in story-writing, story-planning, and diversity controls under time constraints, and show that increased types of human collaboration at both planning and writing stages results in a 10-50% improvement in story quality as compared to less interactive baselines. We also show an accompanying increase in user engagement and satisfaction with stories as compared to our own less interactive systems and to previous turn-taking approaches to interaction. Finally, we find that humans tasked with collaboratively improving a particular characteristic of a story are in fact able to do so, which has implications for future uses of human-in-the-loop systems.