2024
pdf
bib
abs
Re-evaluating the Need for Visual Signals in Unsupervised Grammar Induction
Boyi Li
|
Rodolfo Corona
|
Karttikeya Mangalam
|
Catherine Chen
|
Daniel Flaherty
|
Serge Belongie
|
Kilian Weinberger
|
Jitendra Malik
|
Trevor Darrell
|
Dan Klein
Findings of the Association for Computational Linguistics: NAACL 2024
Are multimodal inputs necessary for grammar induction? Recent work has shown that multimodal training inputs can improve grammar induction. However, these improvements are based on comparisons to weak text-only baselines that were trained on relatively little textual data. To determine whether multimodal inputs are needed in regimes with large amounts of textual training data, we design a stronger text-only baseline, which we refer to as LC-PCFG. LC-PCFG is a C-PFCG that incorporates embeddings from text-only large language models (LLMs). We use a fixed grammar family to directly compare LC-PCFG to various multimodal grammar induction methods. We compare performance on four benchmark datasets. LC-PCFG provides an up to 17% relative improvement in Corpus-F1 compared to state-of-the-art multimodal grammar induction methods. LC-PCFG is also more computationally efficient, providing an up to 85% reduction in parameter count and 8.8× reduction in training time compared to multimodal approaches. These results suggest that multimodal inputs may not be necessary for grammar induction, and emphasize the importance of strong vision-free baselines for evaluating the benefit of multimodal approaches.
pdf
bib
abs
LLM Tropes: Revealing Fine-Grained Values and Opinions in Large Language Models
Dustin Wright
|
Arnav Arora
|
Nadav Borenstein
|
Srishti Yadav
|
Serge Belongie
|
Isabelle Augenstein
Findings of the Association for Computational Linguistics: EMNLP 2024
Uncovering latent values and opinions embedded in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by prompting LLMs with survey questions and quantifying the stances in the outputs towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing natural patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
2019
pdf
bib
abs
Neural Naturalist: Generating Fine-Grained Image Comparisons
Maxwell Forbes
|
Christine Kaeser-Chen
|
Piyush Sharma
|
Serge Belongie
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
We introduce the new Birds-to-Words dataset of 41k sentences describing fine-grained differences between photographs of birds. The language collected is highly detailed, while remaining understandable to the everyday observer (e.g., “heart-shaped face,” “squat body”). Paragraph-length descriptions naturally adapt to varying levels of taxonomic and visual distance—drawn from a novel stratified sampling approach—with the appropriate level of detail. We propose a new model called Neural Naturalist that uses a joint image encoding and comparative module to generate comparative language, and evaluate the results with humans who must use the descriptions to distinguish real images. Our results indicate promising potential for neural models to explain differences in visual embedding space using natural language, as well as a concrete path for machine learning to aid citizen scientists in their effort to preserve biodiversity.