Sergey Edunov


2024

pdf bib
Effective Long-Context Scaling of Foundation Models
Wenhan Xiong | Jingyu Liu | Igor Molybog | Hejia Zhang | Prajjwal Bhargava | Rui Hou | Louis Martin | Rashi Rungta | Karthik Abinav Sankararaman | Barlas Oguz | Madian Khabsa | Han Fang | Yashar Mehdad | Sharan Narang | Kshitiz Malik | Angela Fan | Shruti Bhosale | Sergey Edunov | Mike Lewis | Sinong Wang | Hao Ma
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present an effective recipe to train strong long-context LLMs that are capable of utilizing massive context windows of up to 32,000 tokens. Our models are built through continual pretraining from Llama 2 checkpoints with longer text sequences and on a dataset where long texts are upsampled. We perform extensive evaluation using language modeling, synthetic context probing tasks, and a wide range of downstream benchmarks. Across all evaluations, our models achieve consistent improvements on most regular-context tasks and significant improvements on long-context tasks over Llama 2. Moreover, with a cost-effective instruction tuning procedure that is free of expensive annotation, the presented models can already surpass gpt-3.5-turbo-16k‘s overall performance on long-context benchmarks. Alongside these results, we provide an in-depth analysis on each individual component of our method. We delve into Llama’s position encodings and discuss its key limitation in modeling long data. We examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths – ablation results suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

2021

pdf bib
Facebook AI’s WMT21 News Translation Task Submission
Chau Tran | Shruti Bhosale | James Cross | Philipp Koehn | Sergey Edunov | Angela Fan
Proceedings of the Sixth Conference on Machine Translation

We describe Facebook’s multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources — WMT, large-scale data mining, and in-domain backtranslation — to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year’s winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation.

pdf bib
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web
Holger Schwenk | Guillaume Wenzek | Sergey Edunov | Edouard Grave | Armand Joulin | Angela Fan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We show that margin-based bitext mining in a multilingual sentence space can be successfully scaled to operate on monolingual corpora of billions of sentences. We use 32 snapshots of a curated common crawl corpus (Wenzel et al, 2019) totaling 71 billion unique sentences. Using one unified approach for 90 languages, we were able to mine 10.8 billion parallel sentences, out of which only 2.9 billions are aligned with English. We illustrate the capability of our scalable mining system to create high quality training sets from one language to any other by training hundreds of different machine translation models and evaluating them on the many-to-many TED benchmark. Further, we evaluate on competitive translation benchmarks such as WMT and WAT. Using only mined bitext, we set a new state of the art for a single system on the WMT’19 test set for English-German/Russian/Chinese. In particular, our English/German and English/Russian systems outperform the best single ones by over 4 BLEU points and are on par with best WMT’19 systems, which train on the WMT training data and augment it with backtranslation. We also achieve excellent results for distant languages pairs like Russian/Japanese, outperforming the best submission at the 2020 WAT workshop. All of the mined bitext will be freely available.

2020

pdf bib
Multilingual Denoising Pre-training for Neural Machine Translation
Yinhan Liu | Jiatao Gu | Naman Goyal | Xian Li | Sergey Edunov | Marjan Ghazvininejad | Mike Lewis | Luke Zettlemoyer
Transactions of the Association for Computational Linguistics, Volume 8

This paper demonstrates that multilingual denoising pre-training produces significant performance gains across a wide variety of machine translation (MT) tasks. We present mBART—a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective (Lewis et al., 2019). mBART is the first method for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, whereas previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text. Pre-training a complete model allows it to be directly fine-tuned for supervised (both sentence-level and document-level) and unsupervised machine translation, with no task- specific modifications. We demonstrate that adding mBART initialization produces performance gains in all but the highest-resource settings, including up to 12 BLEU points for low resource MT and over 5 BLEU points for many document-level and unsupervised models. We also show that it enables transfer to language pairs with no bi-text or that were not in the pre-training corpus, and present extensive analysis of which factors contribute the most to effective pre-training.1

pdf bib
Language Models not just for Pre-training: Fast Online Neural Noisy Channel Modeling
Shruti Bhosale | Kyra Yee | Sergey Edunov | Michael Auli
Proceedings of the Fifth Conference on Machine Translation

Pre-training models on vast quantities of unlabeled data has emerged as an effective approach to improving accuracy on many NLP tasks. On the other hand, traditional machine translation has a long history of leveraging unlabeled data through noisy channel modeling. The same idea has recently been shown to achieve strong improvements for neural machine translation. Unfortunately, na ̈ıve noisy channel modeling with modern sequence to sequence models is up to an order of magnitude slower than alternatives. We address this issue by introducing efficient approximations to make inference with the noisy channel approach as fast as strong ensembles while increasing accuracy. We also show that the noisy channel approach can outperform strong pre-training results by achieving a new state of the art on WMT Romanian-English translation.

pdf bib
On The Evaluation of Machine Translation Systems Trained With Back-Translation
Sergey Edunov | Myle Ott | Marc’Aurelio Ranzato | Michael Auli
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Back-translation is a widely used data augmentation technique which leverages target monolingual data. However, its effectiveness has been challenged since automatic metrics such as BLEU only show significant improvements for test examples where the source itself is a translation, or translationese. This is believed to be due to translationese inputs better matching the back-translated training data. In this work, we show that this conjecture is not empirically supported and that back-translation improves translation quality of both naturally occurring text as well as translationese according to professional human translators. We provide empirical evidence to support the view that back-translation is preferred by humans because it produces more fluent outputs. BLEU cannot capture human preferences because references are translationese when source sentences are natural text. We recommend complementing BLEU with a language model score to measure fluency.

pdf bib
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin | Barlas Oguz | Sewon Min | Patrick Lewis | Ledell Wu | Sergey Edunov | Danqi Chen | Wen-tau Yih
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.

2019

pdf bib
Pre-trained language model representations for language generation
Sergey Edunov | Alexei Baevski | Michael Auli
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Pre-trained language model representations have been successful in a wide range of language understanding tasks. In this paper, we examine different strategies to integrate pre-trained representations into sequence to sequence models and apply it to neural machine translation and abstractive summarization. We find that pre-trained representations are most effective when added to the encoder network which slows inference by only 14%. Our experiments in machine translation show gains of up to 5.3 BLEU in a simulated resource-poor setup. While returns diminish with more labeled data, we still observe improvements when millions of sentence-pairs are available. Finally, on abstractive summarization we achieve a new state of the art on the full text version of CNN/DailyMail.

pdf bib
fairseq: A Fast, Extensible Toolkit for Sequence Modeling
Myle Ott | Sergey Edunov | Alexei Baevski | Angela Fan | Sam Gross | Nathan Ng | David Grangier | Michael Auli
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs. A demo video can be found at https://www.youtube.com/watch?v=OtgDdWtHvto

pdf bib
Cloze-driven Pretraining of Self-attention Networks
Alexei Baevski | Sergey Edunov | Yinhan Liu | Luke Zettlemoyer | Michael Auli
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present a new approach for pretraining a bi-directional transformer model that provides significant performance gains across a variety of language understanding problems. Our model solves a cloze-style word reconstruction task, where each word is ablated and must be predicted given the rest of the text. Experiments demonstrate large performance gains on GLUE and new state of the art results on NER as well as constituency parsing benchmarks, consistent with BERT. We also present a detailed analysis of a number of factors that contribute to effective pretraining, including data domain and size, model capacity, and variations on the cloze objective.

pdf bib
Facebook FAIR’s WMT19 News Translation Task Submission
Nathan Ng | Kyra Yee | Alexei Baevski | Myle Ott | Michael Auli | Sergey Edunov
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper describes Facebook FAIR’s submission to the WMT19 shared news translation task. We participate in four language directions, English <-> German and English <-> Russian in both directions. Following our submission from last year, our baseline systems are large BPE-based transformer models trained with the FAIRSEQ sequence modeling toolkit. This year we experiment with different bitext data filtering schemes, as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific data, then decode using noisy channel model reranking. Our system improves on our previous system’s performance by 4.5 BLEU points and achieves the best case-sensitive BLEU score for the translation direction English→Russian.

2018

pdf bib
Scaling Neural Machine Translation
Myle Ott | Sergey Edunov | David Grangier | Michael Auli
Proceedings of the Third Conference on Machine Translation: Research Papers

Sequence to sequence learning models still require several days to reach state of the art performance on large benchmark datasets using a single machine. This paper shows that reduced precision and large batch training can speedup training by nearly 5x on a single 8-GPU machine with careful tuning and implementation. On WMT’14 English-German translation, we match the accuracy of Vaswani et al. (2017) in under 5 hours when training on 8 GPUs and we obtain a new state of the art of 29.3 BLEU after training for 85 minutes on 128 GPUs. We further improve these results to 29.8 BLEU by training on the much larger Paracrawl dataset. On the WMT’14 English-French task, we obtain a state-of-the-art BLEU of 43.2 in 8.5 hours on 128 GPUs.

pdf bib
Classical Structured Prediction Losses for Sequence to Sequence Learning
Sergey Edunov | Myle Ott | Michael Auli | David Grangier | Marc’Aurelio Ranzato
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

There has been much recent work on training neural attention models at the sequence-level using either reinforcement learning-style methods or by optimizing the beam. In this paper, we survey a range of classical objective functions that have been widely used to train linear models for structured prediction and apply them to neural sequence to sequence models. Our experiments show that these losses can perform surprisingly well by slightly outperforming beam search optimization in a like for like setup. We also report new state of the art results on both IWSLT’14 German-English translation as well as Gigaword abstractive summarization. On the large WMT’14 English-French task, sequence-level training achieves 41.5 BLEU which is on par with the state of the art.

pdf bib
Understanding Back-Translation at Scale
Sergey Edunov | Myle Ott | Michael Auli | David Grangier
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

An effective method to improve neural machine translation with monolingual data is to augment the parallel training corpus with back-translations of target language sentences. This work broadens the understanding of back-translation and investigates a number of methods to generate synthetic source sentences. We find that in all but resource poor settings back-translations obtained via sampling or noised beam outputs are most effective. Our analysis shows that sampling or noisy synthetic data gives a much stronger training signal than data generated by beam or greedy search. We also compare how synthetic data compares to genuine bitext and study various domain effects. Finally, we scale to hundreds of millions of monolingual sentences and achieve a new state of the art of 35 BLEU on the WMT’14 English-German test set.