Seth Ebner


2024

pdf bib
A Closer Look at Claim Decomposition
Miriam Wanner | Seth Ebner | Zhengping Jiang | Mark Dredze | Benjamin Van Durme
Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)

As generated text becomes more commonplace, it is increasingly important to evaluate how well-supported such text is by external knowledge sources. Many approaches for evaluating textual support rely on some method for decomposing text into its individual subclaims which are scored against a trusted reference. We investigate how various methods of claim decomposition—especially LLM-based methods—affect the result of an evaluation approach such as the recently proposed FActScore, finding that it is sensitive to the decomposition method used. This sensitivity arises because such metrics attribute overall textual support to the model that generated the text even though error can also come from the metric’s decomposition step. To measure decomposition quality, we introduce an adaptation of FActScore, which we call DecompScore. We then propose an LLM-based approach to generating decompositions inspired by Bertrand Russell’s theory of logical atomism and neo-Davidsonian semantics and demonstrate its improved decomposition quality over previous methods.

2023

pdf bib
The Effect of Alignment Correction on Cross-Lingual Annotation Projection
Shabnam Behzad | Seth Ebner | Marc Marone | Benjamin Van Durme | Mahsa Yarmohammadi
Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII)

Cross-lingual annotation projection is a practical method for improving performance on low resource structured prediction tasks. An important step in annotation projection is obtaining alignments between the source and target texts, which enables the mapping of annotations across the texts. By manually correcting automatically generated alignments, we examine the impact of alignment quality—automatic, manual, and mixed—on downstream performance for two information extraction tasks and quantify the trade-off between annotation effort and model performance.

2021

pdf bib
Gradual Fine-Tuning for Low-Resource Domain Adaptation
Haoran Xu | Seth Ebner | Mahsa Yarmohammadi | Aaron Steven White | Benjamin Van Durme | Kenton Murray
Proceedings of the Second Workshop on Domain Adaptation for NLP

Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate that gradually fine-tuning in a multi-step process can yield substantial further gains and can be applied without modifying the model or learning objective.

pdf bib
Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction
Mahsa Yarmohammadi | Shijie Wu | Marc Marone | Haoran Xu | Seth Ebner | Guanghui Qin | Yunmo Chen | Jialiang Guo | Craig Harman | Kenton Murray | Aaron Steven White | Mark Dredze | Benjamin Van Durme
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.

2020

pdf bib
Multi-Sentence Argument Linking
Seth Ebner | Patrick Xia | Ryan Culkin | Kyle Rawlins | Benjamin Van Durme
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present a novel document-level model for finding argument spans that fill an event’s roles, connecting related ideas in sentence-level semantic role labeling and coreference resolution. Because existing datasets for cross-sentence linking are small, development of our neural model is supported through the creation of a new resource, Roles Across Multiple Sentences (RAMS), which contains 9,124 annotated events across 139 types. We demonstrate strong performance of our model on RAMS and other event-related datasets.

pdf bib
Reading the Manual: Event Extraction as Definition Comprehension
Yunmo Chen | Tongfei Chen | Seth Ebner | Aaron Steven White | Benjamin Van Durme
Proceedings of the Fourth Workshop on Structured Prediction for NLP

We ask whether text understanding has progressed to where we may extract event information through incremental refinement of bleached statements derived from annotation manuals. Such a capability would allow for the trivial construction and extension of an extraction framework by intended end-users through declarations such as, “Some person was born in some location at some time.” We introduce an example of a model that employs such statements, with experiments illustrating we can extract events under closed ontologies and generalize to unseen event types simply by reading new definitions.

2019

pdf bib
Bag-of-Words Transfer: Non-Contextual Techniques for Multi-Task Learning
Seth Ebner | Felicity Wang | Benjamin Van Durme
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

Many architectures for multi-task learning (MTL) have been proposed to take advantage of transfer among tasks, often involving complex models and training procedures. In this paper, we ask if the sentence-level representations learned in previous approaches provide significant benefit beyond that provided by simply improving word-based representations. To investigate this question, we consider three techniques that ignore sequence information: a syntactically-oblivious pooling encoder, pre-trained non-contextual word embeddings, and unigram generative regularization. Compared to a state-of-the-art MTL approach to textual inference, the simple techniques we use yield similar performance on a universe of task combinations while reducing training time and model size.