Seyed Mahed Mousavi


2024

pdf bib
DyKnow: Dynamically Verifying Time-Sensitive Factual Knowledge in LLMs
Seyed Mahed Mousavi | Simone Alghisi | Giuseppe Riccardi
Findings of the Association for Computational Linguistics: EMNLP 2024

LLMs acquire knowledge from massive data snapshots collected at different timestamps. Their knowledge is then commonly evaluated using static benchmarks. However, factual knowledge is generally subject to time-sensitive changes, and static benchmarks cannot address those cases. We present an approach to dynamically evaluate the knowledge in LLMs and their time-sensitiveness against Wikidata, a publicly available up-to-date knowledge graph. We evaluate the time-sensitive knowledge in twenty-four private and open-source LLMs, as well as the effectiveness of four editing methods in updating the outdated facts. Our results show that 1) outdatedness is a critical problem across state-of-the-art LLMs; 2) LLMs output inconsistent answers when prompted with slight variations of the question prompt; and 3) the performance of the state-of-the-art knowledge editing algorithms is very limited, as they can not reduce the cases of outdatedness and output inconsistency.

pdf bib
Should We Fine-Tune or RAG? Evaluating Different Techniques to Adapt LLMs for Dialogue
Simone Alghisi | Massimo Rizzoli | Gabriel Roccabruna | Seyed Mahed Mousavi | Giuseppe Riccardi
Proceedings of the 17th International Natural Language Generation Conference

We study the limitations of Large Language Models (LLMs) for the task of response generation in human-machine dialogue. Several techniques have been proposed in the literature for different dialogue types (e.g., Open-Domain). However, the evaluations of these techniques have been limited in terms of base LLMs, dialogue types and evaluation metrics. In this work, we extensively analyze different LLM adaptation techniques when applied to different dialogue types. We have selected two base LLMs, Llama-2 and Mistral, and four dialogue types Open-Domain, Knowledge-Grounded, Task-Oriented, and Question Answering. We evaluate the performance of in-context learning and fine-tuning techniques across datasets selected for each dialogue type. We assess the impact of incorporating external knowledge to ground the generation in both scenarios of Retrieval-Augmented Generation (RAG) and gold knowledge. We adopt consistent evaluation and explainability criteria for automatic metrics and human evaluation protocols. Our analysis shows that there is no universal best-technique for adapting large language models as the efficacy of each technique depends on both the base LLM and the specific type of dialogue. Last but not least, the assessment of the best adaptation technique should include human evaluation to avoid false expectations and outcomes derived from automatic metrics.

pdf bib
Dolomites@#SMM4H 2024: Helping LLMs “Know The Drill” in Low-Resource Settings - A Study on Social Media Posts
Giuliano Tortoreto | Seyed Mahed Mousavi
Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks

The amount of data to fine-tune LLMs plays a crucial role in the performance of these models in downstream tasks. Consequently, it is not straightforward to deploy these models in low-resource settings. In this work, we investigate two new multi-task learning data augmentation approaches for fine-tuning LLMs when little data is available: “In-domain Augmentation” of the training data and extracting “Drills” as smaller tasks from the target dataset. We evaluate the proposed approaches in three natural language processing settings in the context of SMM4H 2024 competition tasks: multi-class classification, entity recognition, and information extraction. The results show that both techniques improve the performance of the models in all three settings, suggesting a positive impact from the knowledge learned in multi-task training to perform the target task.

2023

pdf bib
Response Generation in Longitudinal Dialogues: Which Knowledge Representation Helps?
Seyed Mahed Mousavi | Simone Caldarella | Giuseppe Riccardi
Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)

Longitudinal Dialogues (LD) are the most challenging type of conversation for human-machine dialogue systems. LDs include the recollections of events, personal thoughts, and emotions specific to each individual in a sparse sequence of dialogue sessions. Dialogue systems designed for LDs should uniquely interact with the users over multiple sessions and long periods of time (e.g. weeks), and engage them in personal dialogues to elaborate on their feelings, thoughts, and real-life events. In this paper, we study the task of response generation in LDs. We evaluate whether general-purpose Pre-trained Language Models (PLM) are appropriate for this purpose. We fine-tune two PLMs, GePpeTto (GPT-2) and iT5, using a dataset of LDs. We experiment with different representations of the personal knowledge extracted from LDs for grounded response generation, including the graph representation of the mentioned events and participants. We evaluate the performance of the models via automatic metrics and the contribution of the knowledge via the Integrated Gradients technique. We categorize the natural language generation errors via human evaluations of contextualization, appropriateness and engagement of the user.

pdf bib
Understanding Emotion Valence is a Joint Deep Learning Task
Gabriel Roccabruna | Seyed Mahed Mousavi | Giuseppe Riccardi
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

The valence analysis of speakers’ utterances or written posts helps to understand the activation and variations of the emotional state throughout the conversation. More recently, the concept of Emotion Carriers (EC) has been introduced to explain the emotion felt by the speaker and its manifestations. In this work, we investigate the natural inter-dependency of valence and ECs via a multi-task learning approach. We experiment with Pre-trained Language Models (PLM) for single-task, two-step, and joint settings for the valence and EC prediction tasks. We compare and evaluate the performance of generative (GPT-2) and discriminative (BERT) architectures in each setting. We observed that providing the ground truth label of one task improves the prediction performance of the models in the other task. We further observed that the discriminative model achieves the best trade-off of valence and EC prediction tasks in the joint prediction setting. As a result, we attain a single model that performs both tasks, thus, saving computation resources at training and inference times.

pdf bib
What’s New? Identifying the Unfolding of New Events in a Narrative
Seyed Mahed Mousavi | Shohei Tanaka | Gabriel Roccabruna | Koichiro Yoshino | Satoshi Nakamura | Giuseppe Riccardi
Proceedings of the 5th Workshop on Narrative Understanding

Narratives include a rich source of events unfolding over time and context. Automatic understanding of these events provides a summarised comprehension of the narrative for further computation (such as reasoning). In this paper, we study the Information Status (IS) of the events and propose a novel challenging task: the automatic identification of new events in a narrative. We define an event as a triplet of subject, predicate, and object. The event is categorized as new with respect to the discourse context and whether it can be inferred through commonsense reasoning. We annotated a publicly available corpus of narratives with the new events at sentence level using human annotators. We present the annotation protocol and study the quality of the annotation and the difficulty of the task. We publish the annotated dataset, annotation materials, and machine learning baseline models for the task of new event extraction for narrative understanding.

2022

pdf bib
Evaluation of Response Generation Models: Shouldn’t It Be Shareable and Replicable?
Seyed Mahed Mousavi | Gabriel Roccabruna | Michela Lorandi | Simone Caldarella | Giuseppe Riccardi
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Human Evaluation (HE) of automatically generated responses is necessary for the advancement of human-machine dialogue research. Current automatic evaluation measures are poor surrogates, at best. There are no agreed-upon HE protocols and it is difficult to develop them. As a result, researchers either perform non-replicable, non-transparent and inconsistent procedures or, worse, limit themselves to automated metrics. We propose to standardize the human evaluation of response generation models by publicly sharing a detailed protocol. The proposal includes the task design, annotators recruitment, task execution, and annotation reporting. Such protocol and process can be used as-is, as-a-whole, in-part, or modified and extended by the research community. We validate the protocol by evaluating two conversationally fine-tuned state-of-the-art models (GPT-2 and T5) for the complex task of personalized response generation. We invite the community to use this protocol - or its future community amended versions - as a transparent, replicable, and comparable approach to HE of generated responses.

pdf bib
Can Emotion Carriers Explain Automatic Sentiment Prediction? A Study on Personal Narratives
Seyed Mahed Mousavi | Gabriel Roccabruna | Aniruddha Tammewar | Steve Azzolin | Giuseppe Riccardi
Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis

Deep Neural Networks (DNN) models have achieved acceptable performance in sentiment prediction of written text. However, the output of these machine learning (ML) models cannot be natively interpreted. In this paper, we study how the sentiment polarity predictions by DNNs can be explained and compare them to humans’ explanations. We crowdsource a corpus of Personal Narratives and ask human judges to annotate them with polarity and select the corresponding token chunks - the Emotion Carriers (EC) - that convey narrators’ emotions in the text. The interpretations of ML neural models are carried out through Integrated Gradients method and we compare them with human annotators’ interpretations. The results of our comparative analysis indicate that while the ML model mostly focuses on the explicit appearance of emotions-laden words (e.g. happy, frustrated), the human annotator predominantly focuses the attention on the manifestation of emotions through ECs that denote events, persons, and objects which activate narrator’s emotional state.

2021

pdf bib
Would you like to tell me more? Generating a corpus of psychotherapy dialogues
Seyed Mahed Mousavi | Alessandra Cervone | Morena Danieli | Giuseppe Riccardi
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations

The acquisition of a dialogue corpus is a key step in the process of training a dialogue model. In this context, corpora acquisitions have been designed either for open-domain information retrieval or slot-filling (e.g. restaurant booking) tasks. However, there has been scarce research in the problem of collecting personal conversations with users over a long period of time. In this paper we focus on the types of dialogues that are required for mental health applications. One of these types is the follow-up dialogue that a psychotherapist would initiate in reviewing the progress of a Cognitive Behavioral Therapy (CBT) intervention. The elicitation of the dialogues is achieved through textual stimuli presented to dialogue writers. We propose an automatic algorithm that generates textual stimuli from personal narratives collected during psychotherapy interventions. The automatically generated stimuli are presented as a seed to dialogue writers following principled guidelines. We analyze the linguistic quality of the collected corpus and compare the performances of psychotherapists and non-expert dialogue writers. Moreover, we report the human evaluation of a corpus-based response-selection model.