2024
pdf
bib
abs
Unlabeled Debiasing in Downstream Tasks via Class-wise Low Variance Regularization
Shahed Masoudian
|
Markus Frohmann
|
Navid Rekabsaz
|
Markus Schedl
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Language models frequently inherit societal biases from their training data. Numerous techniques have been proposed to mitigate these biases during both the pre-training and fine-tuning stages. However, fine-tuning a pre-trained debiased language model on a downstream task can reintroduce biases into the model. Additionally, existing debiasing methods for downstream tasks either (i) require labels of protected attributes (e.g., age, race, or political views) that are often not available or (ii) rely on indicators of bias, which restricts their applicability to gender debiasing since they rely on gender-specific words. To address this, we introduce a novel debiasing regularization technique based on the class-wise variance of embeddings. Crucially, our method does not require attribute labels and targets any attribute, thus addressing the shortcomings of existing debiasing methods. Our experiments on encoder language models and three datasets demonstrate that our method outperforms existing strong debiasing baselines that rely on target attribute labels while maintaining performance on the target task.
pdf
bib
abs
ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale
Markus Frohmann
|
Carolin Holtermann
|
Shahed Masoudian
|
Anne Lauscher
|
Navid Rekabsaz
Findings of the Association for Computational Linguistics: ACL 2024
Multi-task learning (MTL) has shown considerable practical benefits, particularly when using language models (LMs). While this is commonly achieved by learning tasks under a joint optimization procedure, some methods, such as AdapterFusion, divide the problem into two stages: (i) task learning, where knowledge specific to a task is encapsulated within sets of parameters (e.g., adapters), and (ii) transfer, where this already learned knowledge is leveraged for a target task. This separation of concerns provides numerous benefits (e.g., promoting reusability). However, current two stage MTL introduces a substantial number of additional parameters. We address this issue by leveraging the usefulness of linearly scaling the output representations of source adapters for transfer learning. We introduce ScaLearn, a simple and highly parameter-efficient two-stage MTL method that capitalizes on the knowledge of the source tasks by learning a minimal set of scaling parameters that enable effective transfer to a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and HumSet) and two encoder LMs show that ScaLearn consistently outperforms strong baselines with a small number of transfer parameters (~0.35% of those of AdapterFusion). Remarkably, we observe that ScaLearn maintains its strong abilities even when further reducing parameters, achieving competitive results with only 8 transfer parameters per target task. Our proposed approach thus demonstrates the power of simple scaling as a promise for more efficient task transfer. Our code is available at https://github.com/CPJKU/ScaLearn.
pdf
bib
abs
Effective Controllable Bias Mitigation for Classification and Retrieval using Gate Adapters
Shahed Masoudian
|
Cornelia Volaucnik
|
Markus Schedl
|
Navid Rekabsaz
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Bias mitigation of Language Models has been the topic of many studies with a recent focus on learning separate modules like adapters for on-demand debiasing. Besides optimizing for a modularized debiased model, it is often critical in practice to control the degree of bias reduction at inference time, e.g., in order to tune for a desired performance-fairness trade-off in search results or to control the strength of debiasing in classification tasks. In this paper, we introduce Controllable Gate Adapter (ConGater), a novel modular gating mechanism with adjustable sensitivity parameters, %In addition to better perseverance of task performance and enhanced information removal, which allows for a gradual transition from the biased state of the model to the fully debiased version at inference time. We demonstrate ConGater performance by (1) conducting adversarial debiasing experiments with three different models on three classification tasks with four protected attributes, and (2) reducing the bias of search results through fairness list-wise regularization to enable adjusting a trade-off between performance and fairness metrics. Our experiments on the classification tasks show that compared to baselines of the same caliber, ConGater can maintain higher task performance while containing less information regarding the attributes. Our results on the retrieval task show that the fully debiased ConGater can achieve the same fairness performance while maintaining more than twice as high task performance than recent strong baselines. Overall, besides strong performance ConGater enables the continuous transitioning between biased and debiased states of models, enhancing personalization of use and interpretability through controllability.
2023
pdf
bib
abs
Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks
Lukas Hauzenberger
|
Shahed Masoudian
|
Deepak Kumar
|
Markus Schedl
|
Navid Rekabsaz
Findings of the Association for Computational Linguistics: ACL 2023
Societal biases are reflected in large pre-trained language models and their fine-tuned versions on downstream tasks. Common in-processing bias mitigation approaches, such as adversarial training and mutual information removal, introduce additional optimization criteria, and update the model to reach a new debiased state. However, in practice, end-users and practitioners might prefer to switch back to the original model, or apply debiasing only on a specific subset of protected attributes. To enable this, we propose a novel modular bias mitigation approach, consisting of stand-alone highly sparse debiasing subnetworks, where each debiasing module can be integrated into the core model on-demand at inference time. Our approach draws from the concept of diff pruning, and proposes a novel training regime adaptable to various representation disentanglement optimizations. We conduct experiments on three classification tasks with gender, race, and age as protected attributes. The results show that our modular approach, while maintaining task performance, improves (or at least remains on-par with) the effectiveness of bias mitigation in comparison with baseline finetuning. Particularly on a two-attribute dataset, our approach with separately learned debiasing subnetworks shows effective utilization of either or both the subnetworks for selective bias mitigation.