Shan Yang
2024
Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting
Siyi Liu
|
Yang Li
|
Jiang Li
|
Shan Yang
|
Yunshi Lan
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent research in zero-shot Relation Extraction (RE) has focused on using Large Language Models (LLMs) due to their impressive zero-shot capabilities. However, current methods often perform suboptimally, mainly due to a lack of detailed, context-specific prompts needed for understanding various sentences and relations. To address this, we introduce the Self-Prompting framework, a novel method designed to fully harness the embedded RE knowledge within LLMs. Specifically, our framework employs a three-stage diversity approach to prompt LLMs, generating multiple synthetic samples that encapsulate specific relations from scratch. These generated samples act as in-context learning samples, offering explicit and context-specific guidance to efficiently prompt LLMs for RE. Experimental evaluations on benchmark datasets show our approach outperforms existing LLM-based zero-shot RE methods. Additionally, our experiments confirm the effectiveness of our generation pipeline in producing high-quality synthetic data that enhances performance.
2021
Entity Concept-enhanced Few-shot Relation Extraction
Shan Yang
|
Yongfei Zhang
|
Guanglin Niu
|
Qinghua Zhao
|
Shiliang Pu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information of the sentences together with the recognized entity pairs, due to limited samples and lack of knowledge. To address this problem, in this paper, we proposed a novel entity CONCEPT-enhanced FEw-shot Relation Extraction scheme (ConceptFERE), which introduces the inherent concepts of entities to provide clues for relation prediction and boost the relations classification performance. Firstly, a concept-sentence attention module is developed to select the most appropriate concept from multiple concepts of each entity by calculating the semantic similarity between sentences and concepts. Secondly, a self-attention based fusion module is presented to bridge the gap of concept embedding and sentence embedding from different semantic spaces. Extensive experiments on the FSRE benchmark dataset FewRel have demonstrated the effectiveness and the superiority of the proposed ConceptFERE scheme as compared to the state-of-the-art baselines. Code is available at https://github.com/LittleGuoKe/ConceptFERE.