Shang-Wen Li


2022

pdf bib
SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark for Semantic and Generative Capabilities
Hsiang-Sheng Tsai | Heng-Jui Chang | Wen-Chin Huang | Zili Huang | Kushal Lakhotia | Shu-wen Yang | Shuyan Dong | Andy Liu | Cheng-I Lai | Jiatong Shi | Xuankai Chang | Phil Hall | Hsuan-Jui Chen | Shang-Wen Li | Shinji Watanabe | Abdelrahman Mohamed | Hung-yi Lee
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transfer learning has proven to be crucial in advancing the state of speech and natural language processing research in recent years. In speech, a model pre-trained by self-supervised learning transfers remarkably well on multiple tasks. However, the lack of a consistent evaluation methodology is limiting towards a holistic understanding of the efficacy of such models. SUPERB was a step towards introducing a common benchmark to evaluate pre-trained models across various speech tasks. In this paper, we introduce SUPERB-SG, a new benchmark focusing on evaluating the semantic and generative capabilities of pre-trained models by increasing task diversity and difficulty over SUPERB. We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain and quality across different types of tasks. It entails freezing pre-trained model parameters, only using simple task-specific trainable heads. The goal is to be inclusive of all researchers, and encourage efficient use of computational resources. We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.

pdf bib
Lifelong Pretraining: Continually Adapting Language Models to Emerging Corpora
Xisen Jin | Dejiao Zhang | Henghui Zhu | Wei Xiao | Shang-Wen Li | Xiaokai Wei | Andrew Arnold | Xiang Ren
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

Pretrained language models (PTLMs) are typically learned over a large, static corpus and further fine-tuned for various downstream tasks. However, when deployed in the real world, a PTLM-based model must deal with data distributions that deviates from what the PTLM was initially trained on. In this paper, we study a lifelong language model pretraining challenge where a PTLM is continually updated so as to adapt to emerging data. Over a domain-incremental research paper stream and a chronologically-ordered tweet stream, we incrementally pretrain a PTLM with different continual learning algorithms, and keep track of the downstream task performance (after fine-tuning). We evaluate PTLM’s ability to adapt to new corpora while retaining learned knowledge in earlier corpora. Our experiments show distillation-based approaches to be most effective in retaining downstream performance in earlier domains. The algorithms also improve knowledge transfer, allowing models to achieve better downstream performance over latest data, and improve temporal generalization when distribution gaps exist between training and evaluation because of time. We believe our problem formulation, methods, and analysis will inspire future studies towards continual pretraining of language models.

2021

pdf bib
Zero-shot Generalization in Dialog State Tracking through Generative Question Answering
Shuyang Li | Jin Cao | Mukund Sridhar | Henghui Zhu | Shang-Wen Li | Wael Hamza | Julian McAuley
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Dialog State Tracking (DST), an integral part of modern dialog systems, aims to track user preferences and constraints (slots) in task-oriented dialogs. In real-world settings with constantly changing services, DST systems must generalize to new domains and unseen slot types. Existing methods for DST do not generalize well to new slot names and many require known ontologies of slot types and values for inference. We introduce a novel ontology-free framework that supports natural language queries for unseen constraints and slots in multi-domain task-oriented dialogs. Our approach is based on generative question-answering using a conditional language model pre-trained on substantive English sentences. Our model improves joint goal accuracy in zero-shot domain adaptation settings by up to 9% (absolute) over the previous state-of-the-art on the MultiWOZ 2.1 dataset.

pdf bib
Supporting Clustering with Contrastive Learning
Dejiao Zhang | Feng Nan | Xiaokai Wei | Shang-Wen Li | Henghui Zhu | Kathleen McKeown | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised clustering aims at discovering the semantic categories of data according to some distance measured in the representation space. However, different categories often overlap with each other in the representation space at the beginning of the learning process, which poses a significant challenge for distance-based clustering in achieving good separation between different categories. To this end, we propose Supporting Clustering with Contrastive Learning (SCCL) – a novel framework to leverage contrastive learning to promote better separation. We assess the performance of SCCL on short text clustering and show that SCCL significantly advances the state-of-the-art results on most benchmark datasets with 3%-11% improvement on Accuracy and 4%-15% improvement on Normalized Mutual Information. Furthermore, our quantitative analysis demonstrates the effectiveness of SCCL in leveraging the strengths of both bottom-up instance discrimination and top-down clustering to achieve better intra-cluster and inter-cluster distances when evaluated with the ground truth cluster labels.

pdf bib
Mitigating Biases in Toxic Language Detection through Invariant Rationalization
Yung-Sung Chuang | Mingye Gao | Hongyin Luo | James Glass | Hung-yi Lee | Yun-Nung Chen | Shang-Wen Li
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)

Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.

pdf bib
Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing
Hung-Yi Lee | Mitra Mohtarami | Shang-Wen Li | Di Jin | Mandy Korpusik | Shuyan Dong | Ngoc Thang Vu | Dilek Hakkani-Tur
Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing

pdf bib
Meta Learning and Its Applications to Natural Language Processing
Hung-yi Lee | Ngoc Thang Vu | Shang-Wen Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Tutorial Abstracts

Deep learning based natural language processing (NLP) has become the mainstream of research in recent years and significantly outperforms conventional methods. However, deep learning models are notorious for being data and computation hungry. These downsides limit the application of such models from deployment to different domains, languages, countries, or styles, since collecting in-genre data and model training from scratch are costly. The long-tail nature of human language makes challenges even more significant. Meta-learning, or ‘Learning to Learn’, aims to learn better learning algorithms, including better parameter initialization, optimization strategy, network architecture, distance metrics, and beyond. Meta-learning has been shown to allow faster fine-tuning, converge to better performance, and achieve amazing results for few-shot learning in many applications. Meta-learning is one of the most important new techniques in machine learning in recent years. There is a related tutorial in ICML 2019 and a related course at Stanford, but most of the example applications given in these materials are about image processing. It is believed that meta-learning has great potential to be applied in NLP, and some works have been proposed with notable achievements in several relevant problems, e.g., relation extraction, machine translation, and dialogue generation and state tracking. However, it does not catch the same level of attention as in the image processing community. In the tutorial, we will first introduce Meta-learning approaches and the theory behind them, and then review the works of applying this technology to NLP problems. This tutorial intends to facilitate researchers in the NLP community to understand this new technology better and promote more research studies using this new technology.

pdf bib
Pairwise Supervised Contrastive Learning of Sentence Representations
Dejiao Zhang | Shang-Wen Li | Wei Xiao | Henghui Zhu | Ramesh Nallapati | Andrew O. Arnold | Bing Xiang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Many recent successes in sentence representation learning have been achieved by simply fine-tuning on the Natural Language Inference (NLI) datasets with triplet loss or siamese loss. Nevertheless, they share a common weakness: sentences in a contradiction pair are not necessarily from different semantic categories. Therefore, optimizing the semantic entailment and contradiction reasoning objective alone is inadequate to capture the high-level semantic structure. The drawback is compounded by the fact that the vanilla siamese or triplet losses only learn from individual sentence pairs or triplets, which often suffer from bad local optima. In this paper, we propose PairSupCon, an instance discrimination based approach aiming to bridge semantic entailment and contradiction understanding with high-level categorical concept encoding. We evaluate PairSupCon on various downstream tasks that involve understanding sentence semantics at different granularities. We outperform the previous state-of-the-art method with 10%–13% averaged improvement on eight clustering tasks, and 5%–6% averaged improvement on seven semantic textual similarity (STS) tasks.

2020

pdf bib
Knowledge Grounded Conversational Symptom Detection with Graph Memory Networks
Hongyin Luo | Shang-Wen Li | James Glass
Proceedings of the 3rd Clinical Natural Language Processing Workshop

In this work, we propose a novel goal-oriented dialog task, automatic symptom detection. We build a system that can interact with patients through dialog to detect and collect clinical symptoms automatically, which can save a doctor’s time interviewing the patient. Given a set of explicit symptoms provided by the patient to initiate a dialog for diagnosing, the system is trained to collect implicit symptoms by asking questions, in order to collect more information for making an accurate diagnosis. After getting the reply from the patient for each question, the system also decides whether current information is enough for a human doctor to make a diagnosis. To achieve this goal, we propose two neural models and a training pipeline for the multi-step reasoning task. We also build a knowledge graph as additional inputs to further improve model performance. Experiments show that our model significantly outperforms the baseline by 4%, discovering 67% of implicit symptoms on average with a limited number of questions.