Recent language generative models are mostly trained on large-scale datasets, while in some real scenarios, the training datasets are often expensive to obtain and would be small-scale. In this paper we investigate the challenging task of less-data constrained generation, especially when the generated news headlines are short yet expected by readers to keep readable and informative simultaneously. We highlight the key information modeling task and propose a novel duality fine-tuning method by formally defining the probabilistic duality constraints between key information prediction and headline generation tasks. The proposed method can capture more information from limited data, build connections between separate tasks, and is suitable for less-data constrained generation tasks. Furthermore, the method can leverage various pre-trained generative regimes, e.g., autoregressive and encoder-decoder models. We conduct extensive experiments to demonstrate that our method is effective and efficient to achieve improved performance in terms of language modeling metric and informativeness correctness metric on two public datasets.
Currently, human-bot symbiosis dialog systems, e.g. pre- and after-sales in E-commerce, are ubiquitous, and the dialog routing component is essential to improve the overall efficiency, reduce human resource cost and increase user experience. To satisfy this requirement, existing methods are mostly heuristic and cannot obtain high-quality performance. In this paper, we investigate the important problem by thoroughly mining both the data-to-task and task-to-task knowledge among various kinds of dialog data. To achieve the above target, we propose a comprehensive and general solution with multi-task learning framework, specifically including a novel dialog encoder and two tailored gated mechanism modules. The proposed Gated Mechanism enhanced Multi-task Model (G3M) can play the role of hierarchical information filtering and is non-invasive to the existing dialog systems. Experiments on two datasets collected from the real world demonstrate our method’s effectiveness and the results achieve the state-of-the-art performance by relatively increasing 8.7%/11.8% on RMSE metric and 2.2%/4.4% on F1 metric.
Recent years have witnessed the proliferation of Massive Open Online Courses (MOOCs). With massive learners being offered MOOCs, there is a demand that the forum contents within MOOCs need to be classified in order to facilitate both learners and instructors. Therefore we investigate a significant application, which is to associate forum threads to subtitles of video clips. This task can be regarded as a document ranking problem, and the key is how to learn a distinguishable text representation from word sequences and learners’ behavior sequences. In this paper, we propose a novel cascade model, which can capture both the latent semantics and latent similarity by modeling MOOC data. Experimental results on two real-world datasets demonstrate that our textual representation outperforms state-of-the-art unsupervised counterparts for the application.