Shao-Lun Huang
2024
Task Oriented In-Domain Data Augmentation
Xiao Liang
|
Xinyu Hu
|
Simiao Zuo
|
Yeyun Gong
|
Qiang Lou
|
Yi Liu
|
Shao-Lun Huang
|
Jian Jiao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have shown superior performance in various applications and fields. To achieve better performance on specialized domains such as law and advertisement, LLMs are often continue pre-trained on in-domain data. However, existing approaches suffer from two major issues. First, in-domain data are scarce compared with general domain-agnostic data. Second, data used for continual pre-training are not task-aware, such that they may not be helpful to downstream applications. We propose TRAIT, a task-oriented in-domain data augmentation framework. Our framework is divided into two parts: in-domain data selection and task-oriented synthetic passage generation. The data selection strategy identifies and selects a large amount of in-domain data from general corpora, and thus significantly enriches domain knowledge in the continual pre-training data. The synthetic passages contain guidance on how to use domain knowledge to answer questions about downstream tasks. By training on such passages, the model aligns with the need of downstream applications. We adapt LLMs to two domains: advertisement and math. On average, TRAIT improves LLM performance by 8% in the advertisement domain and 7.5% in the math domain.
2023
MultiEMO: An Attention-Based Correlation-Aware Multimodal Fusion Framework for Emotion Recognition in Conversations
Tao Shi
|
Shao-Lun Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Emotion Recognition in Conversations (ERC) is an increasingly popular task in the Natural Language Processing community, which seeks to achieve accurate emotion classifications of utterances expressed by speakers during a conversation. Most existing approaches focus on modeling speaker and contextual information based on the textual modality, while the complementarity of multimodal information has not been well leveraged, few current methods have sufficiently captured the complex correlations and mapping relationships across different modalities. Furthermore, existing state-of-the-art ERC models have difficulty classifying minority and semantically similar emotion categories. To address these challenges, we propose a novel attention-based correlation-aware multimodal fusion framework named MultiEMO, which effectively integrates multimodal cues by capturing cross-modal mapping relationships across textual, audio and visual modalities based on bidirectional multi-head cross-attention layers. The difficulty of recognizing minority and semantically hard-to-distinguish emotion classes is alleviated by our proposed Sample-Weighted Focal Contrastive (SWFC) loss. Extensive experiments on two benchmark ERC datasets demonstrate that our MultiEMO framework consistently outperforms existing state-of-the-art approaches in all emotion categories on both datasets, the improvements in minority and semantically similar emotions are especially significant.
2022
Finding Influential Instances for Distantly Supervised Relation Extraction
Zifeng Wang
|
Rui Wen
|
Xi Chen
|
Shao-Lun Huang
|
Ningyu Zhang
|
Yefeng Zheng
Proceedings of the 29th International Conference on Computational Linguistics
Distant supervision (DS) is a strong way to expand the datasets for enhancing relation extraction (RE) models but often suffers from high label noise. Current works based on attention, reinforcement learning, or GAN are black-box models so they neither provide meaningful interpretation of sample selection in DS nor stability on different domains. On the contrary, this work proposes a novel model-agnostic instance sampling method for DS by influence function (IF), namely REIF. Our method identifies favorable/unfavorable instances in the bag based on IF, then does dynamic instance sampling. We design a fast influence sampling algorithm that reduces the computational complexity from 𝒪(mn) to 𝒪(1), with analyzing its robustness on the selected sampling function. Experiments show that by simply sampling the favorable instances during training, REIF is able to win over a series of baselines which have complicated architectures. We also demonstrate that REIF can support interpretable instance selection.