Shaotian Yan
2025
Concise and Organized Perception Facilitates Reasoning in Large Language Models
Junjie Liu
|
Shaotian Yan
|
Chen Shen
|
Zhengdong Xiao
|
Liang Xie
|
Wenxiao Wang
|
Jieping Ye
Findings of the Association for Computational Linguistics: NAACL 2025
Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the context and requiring multi-hop reasoning. In particular, the reasoning capabilities of LLMs are brittle to disorder and distractibility. In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs confront difficulties akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks. However, in contrast to LLMs, disordered and irrelevant content does not significantly decrease human performance, as humans have a propensity to distill the most relevant information and systematically organize their thoughts, aiding them in responding to questions.Stem from that, we further propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently. It then prompts the LLMs in a more organized form that adapts to the model’s inference process. By perceiving concise and organized context, the reasoning abilities of LLMs can be better elicited. Extensive experimental results on several popular logical benchmarks (ProofWriter, PrOntoQA, PrOntoQA-OOD, and FOLIO) and mathematical benchmark (DI-GSM) show that COP significantly outperforms previous state-of-the-art methods.
From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks
Xiaofeng Zhang
|
Yihao Quan
|
Chen Shen
|
Xiaosong Yuan
|
Shaotian Yan
|
Liang Xie
|
Wenxiao Wang
|
Chaochen Gu
|
Hao Tang
|
Jieping Ye
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Vision Language Models (LVLMs) achieve great performance on visual-language reasoning tasks, however, the black-box nature of LVLMs hinders in-depth research on the reasoning mechanism. As all images need to be converted into image tokens to fit the input format of large language models (LLMs) along with natural language prompts, sequential visual representation is essential to the performance of LVLMs, and the information flow analysis approach can be an effective tool for determining interactions between these representations. In this paper, we propose integrating attention analysis with LLaVA-CAM, concretely, attention scores highlight relevant regions during forward propagation, while LLaVA-CAM captures gradient changes through backward propagation, revealing key image features. By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers. To validate our analysis, we conduct comprehensive experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks, and experimental results not only verify our hypothesis but also reveal a consistent pattern of information flow convergence in the corresponding layers, and the information flow cliff layer will be different due to different contexts.