Shashank Shailabh


pdf bib
TAN-NTM: Topic Attention Networks for Neural Topic Modeling
Madhur Panwar | Shashank Shailabh | Milan Aggarwal | Balaji Krishnamurthy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Topic models have been widely used to learn text representations and gain insight into document corpora. To perform topic discovery, most existing neural models either take document bag-of-words (BoW) or sequence of tokens as input followed by variational inference and BoW reconstruction to learn topic-word distribution. However, leveraging topic-word distribution for learning better features during document encoding has not been explored much. To this end, we develop a framework TAN-NTM, which processes document as a sequence of tokens through a LSTM whose contextual outputs are attended in a topic-aware manner. We propose a novel attention mechanism which factors in topic-word distribution to enable the model to attend on relevant words that convey topic related cues. The output of topic attention module is then used to carry out variational inference. We perform extensive ablations and experiments resulting in ~9-15 percentage improvement over score of existing SOTA topic models in NPMI coherence on several benchmark datasets - 20Newsgroups, Yelp Review Polarity and AGNews. Further, we show that our method learns better latent document-topic features compared to existing topic models through improvement on two downstream tasks: document classification and topic guided keyphrase generation.

pdf bib
KnowGraph@IITK at SemEval-2021 Task 11: Building Knowledge Graph for NLP Research
Shashank Shailabh | Sajal Chaurasia | Ashutosh Modi
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Research in Natural Language Processing is making rapid advances, resulting in the publication of a large number of research papers. Finding relevant research papers and their contribution to the domain is a challenging problem. In this paper, we address this challenge via the SemEval 2021 Task 11: NLPContributionGraph, by developing a system for a research paper contributions-focused knowledge graph over Natural Language Processing literature. The task is divided into three sub-tasks: extracting contribution sentences that show important contributions in the research article, extracting phrases from the contribution sentences, and predicting the information units in the research article together with triplet formation from the phrases. The proposed system is agnostic to the subject domain and can be applied for building a knowledge graph for any area. We found that transformer-based language models can significantly improve existing techniques and utilized the SciBERT-based model. Our first sub-task uses Bidirectional LSTM (BiLSTM) stacked on top of SciBERT model layers, while the second sub-task uses Conditional Random Field (CRF) on top of SciBERT with BiLSTM. The third sub-task uses a combined SciBERT based neural approach with heuristics for information unit prediction and triplet formation from the phrases. Our system achieved F1 score of 0.38, 0.63 and 0.76 in end-to-end pipeline testing, phrase extraction testing and triplet extraction testing respectively.