Sheena Panthaplackel


2022

pdf bib
Updated Headline Generation: Creating Updated Summaries for Evolving News Stories
Sheena Panthaplackel | Adrian Benton | Mark Dredze
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose the task of updated headline generation, in which a system generates a headline for an updated article, considering both the previous article and headline. The system must identify the novel information in the article update, and modify the existing headline accordingly. We create data for this task using the NewsEdits corpus by automatically identifying contiguous article versions that are likely to require a substantive headline update. We find that models conditioned on the prior headline and body revisions produce headlines judged by humans to be as factual as gold headlines while making fewer unnecessary edits compared to a standard headline generation model. Our experiments establish benchmarks for this new contextual summarization task.

pdf bib
Learning to Describe Solutions for Bug Reports Based on Developer Discussions
Sheena Panthaplackel | Junyi Jessy Li | Milos Gligoric | Ray Mooney
Findings of the Association for Computational Linguistics: ACL 2022

When a software bug is reported, developers engage in a discussion to collaboratively resolve it. While the solution is likely formulated within the discussion, it is often buried in a large amount of text, making it difficult to comprehend and delaying its implementation. To expedite bug resolution, we propose generating a concise natural language description of the solution by synthesizing relevant content within the discussion, which encompasses both natural language and source code. We build a corpus for this task using a novel technique for obtaining noisy supervision from repository changes linked to bug reports, with which we establish benchmarks. We also design two systems for generating a description during an ongoing discussion by classifying when sufficient context for performing the task emerges in real-time. With automated and human evaluation, we find this task to form an ideal testbed for complex reasoning in long, bimodal dialogue context.

2020

pdf bib
Learning to Update Natural Language Comments Based on Code Changes
Sheena Panthaplackel | Pengyu Nie | Milos Gligoric | Junyi Jessy Li | Raymond Mooney
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We formulate the novel task of automatically updating an existing natural language comment based on changes in the body of code it accompanies. We propose an approach that learns to correlate changes across two distinct language representations, to generate a sequence of edits that are applied to the existing comment to reflect the source code modifications. We train and evaluate our model using a dataset that we collected from commit histories of open-source software projects, with each example consisting of a concurrent update to a method and its corresponding comment. We compare our approach against multiple baselines using both automatic metrics and human evaluation. Results reflect the challenge of this task and that our model outperforms baselines with respect to making edits.