Sheikh Shafayat


2024

pdf bib
LangBridge: Multilingual Reasoning Without Multilingual Supervision
Dongkeun Yoon | Joel Jang | Sungdong Kim | Seungone Kim | Sheikh Shafayat | Minjoon Seo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce LangBridge, a zero-shot approach to adapt language models for multilingual reasoning tasks without multilingual supervision. LangBridge operates by bridging two models, each specialized in different aspects: (1) one specialized in understanding multiple languages (e.g., mT5 encoder) and (2) one specialized in reasoning (e.g., MetaMath). LangBridge connects the two models by introducing minimal trainable parameters between them. Despite utilizing only English data for training, LangBridge considerably enhances the performance of language models on low-resource languages across mathematical reasoning, code completion, logical reasoning, and commonsense reasoning. Our analysis suggests that the efficacy of LangBridge stems from the language-agnostic characteristics of multilingual representations. We publicly release our code and models.

pdf bib
BEnQA: A Question Answering Benchmark for Bengali and English
Sheikh Shafayat | H Hasan | Minhajur Mahim | Rifki Putri | James Thorne | Alice Oh
Findings of the Association for Computational Linguistics: ACL 2024

In this study, we introduce BEnQA, a dataset comprising parallel Bengali and English exam questions for middle and high school levels in Bangladesh. Our dataset consists of approximately 5K questions covering several subjects in science with different types of questions, including factual, application, and reasoning-based questions. We benchmark several Large Language Models (LLMs) with our parallel dataset and observe a notable performance disparity between the models in Bengali and English. We also investigate some prompting methods, and find that Chain-of-Thought prompting is beneficial mostly on reasoning questions, but not so much on factual ones. We also find that appending English translation helps to answer questions in Bengali. Our findings point to promising future research directions for improving the performance of LLMs in Bengali and more generally in low-resource languages.