Sheila Castilho


2024

pdf bib
How Much Data is Enough Data? Fine-Tuning Large Language Models for In-House Translation: Performance Evaluation Across Multiple Dataset Sizes
Inacio Vieira | Will Allred | Séamus Lankford | Sheila Castilho | Andy Way
Proceedings of the 16th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

In this study, we explore the effectiveness of fine-tuning Large Language Models (LLMs), particularly Llama 3 8B Instruct, using translation memories (TMs) for hyper-specific machine translation (MT) tasks. Decoder-only LLMs have shown impressive performance in MT due to their ability to learn from extensive datasets and generate high quality translations. However, LLMs often struggle with the nuances and style required for organisation-specific translation so we leverage TMs, which store human translated segments, as a valuable resource to enhance translation accuracy and efficiency. We investigate the impact of fine-tuning the Llama 3 model using TMs from a specific organisation in the software sector. Our experiments cover five translation directions across languages of varying resource levels (English to Brazilian Portuguese, Czech, German, Finnish, and Korean). We analyse diverse sizes of training datasets (1k to 100k+ segments) to evaluate their influence on translation quality. We fine-tune separate models for each training set and evaluate their performance based on automatic metrics, BLEU, chrF++, TER, and COMET. Our findings reveal improvement in translation performance with larger datasets across all metrics. On average, BLEU and COMET scores increase by 13 and 25 points respectively on the largest training set against the baseline model. Notably, there is a performance deterioration in comparison with the baseline model when fine-tuning on only 1k and 2k examples; however, we observe a substantial improvement as the training dataset size increases. The study highlights the potential of integrating TMs with LLMs to create bespoke translation models tailored to the specific needs of businesses, therefore enhancing translation quality and reducing turn-around times. This approach offers a valuable insight for organisations seeking to leverage TMs and LLMs for optimal translation outcomes, specially in narrower domains.

pdf bib
Perceptions of Educators on MTQA Curriculum and Instruction
João Camargo | Sheila Castilho | Joss Moorkens
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)

This paper reports the preliminary resultsof a survey aimed at identifying and ex-ploring the attitudes and recommendationsof machine translation quality assessment(MTQA) educators. Drawing upon ele-ments from the literature on MTQA teach-ing, the survey explores themes that maypose a challenge or lead to successful im-plementation of human evaluation, as theliterature shows that there has not beenenough design and reporting. Results show educators’ awareness ofthe topic, awareness stemming from therecommendations of the literature on MTevaluation, and reports new challenges andissues.

2023

pdf bib
Results of WMT23 Metrics Shared Task: Metrics Might Be Guilty but References Are Not Innocent
Markus Freitag | Nitika Mathur | Chi-kiu Lo | Eleftherios Avramidis | Ricardo Rei | Brian Thompson | Tom Kocmi | Frederic Blain | Daniel Deutsch | Craig Stewart | Chrysoula Zerva | Sheila Castilho | Alon Lavie | George Foster
Proceedings of the Eighth Conference on Machine Translation

This paper presents the results of the WMT23 Metrics Shared Task. Participants submitting automatic MT evaluation metrics were asked to score the outputs of the translation systems competing in the WMT23 News Translation Task. All metrics were evaluated on how well they correlate with human ratings at the system and segment level. Similar to last year, we acquired our own human ratings based on expert-based human evaluation via Multidimensional Quality Metrics (MQM). Following last year’s success, we also included a challenge set subtask, where participants had to create contrastive test suites for evaluating metrics’ ability to capture and penalise specific types of translation errors. Furthermore, we improved our meta-evaluation procedure by considering fewer tasks and calculating a global score by weighted averaging across the various tasks. We present an extensive analysis on how well metrics perform on three language pairs: Chinese-English, Hebrew-English on the sentence-level and English-German on the paragraph-level. The results strongly confirm the results reported last year, that neural-based metrics are significantly better than non-neural metrics in their levels of correlation with human judgments. Further, we investigate the impact of bad reference translations on the correlations of metrics with human judgment. We present a novel approach for generating synthetic reference translations based on the collection of MT system outputs and their corresponding MQM ratings, which has the potential to mitigate bad reference issues we observed this year for some language pairs. Finally, we also study the connections between the magnitude of metric differences and their expected significance in human evaluation, which should help the community to better understand and adopt new metrics.

pdf bib
Do online Machine Translation Systems Care for Context? What About a GPT Model?
Sheila Castilho | Clodagh Quinn Mallon | Rahel Meister | Shengya Yue
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

This paper addresses the challenges of evaluating document-level machine translation (MT) in the context of recent advances in context-aware neural machine translation (NMT). It investigates how well online MT systems deal with six context-related issues, namely lexical ambiguity, grammatical gender, grammatical number, reference, ellipsis, and terminology, when a larger context span containing the solution for those issues is given as input. Results are compared to the translation outputs from the online ChatGPT. Our results show that, while the change of punctuation in the input yields great variability in the output translations, the context position does not seem to have a great impact. Moreover, the GPT model seems to outperform the NMT systems but performs poorly for Irish. The study aims to provide insights into the effectiveness of online MT systems in handling context and highlight the importance of considering contextual factors in evaluating MT systems.

2022

pdf bib
How Much Context Span is Enough? Examining Context-Related Issues for Document-level MT
Sheila Castilho
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper analyses how much context span is necessary to solve different context-related issues, namely, reference, ellipsis, gender, number, lexical ambiguity, and terminology when translating from English into Portuguese. We use the DELA corpus, which consists of 60 documents and six different domains (subtitles, literary, news, reviews, medical, and legislation). We find that the shortest context span to disambiguate issues can appear in different positions in the document including preceding, following, global, world knowledge. Moreover, the average length depends on the issue types as well as the domain. Moreover, we show that the standard approach of relying on only two preceding sentences as context might not be enough depending on the domain and issue types.

pdf bib
TransCasm: A Bilingual Corpus of Sarcastic Tweets
Desline Simon | Sheila Castilho | Pintu Lohar | Haithem Afli
Proceedings of the LREC 2022 workshop on Natural Language Processing for Political Sciences

Sarcasm is extensively used in User Generated Content (UGC) in order to express one’s discontent, especially through blogs, forums, or social media such as Twitter. Several works have attempted to detect and analyse sarcasm in UGC. However, the lack of freely available corpora in this field makes the task even more difficult. In this work, we present “TransCasm” corpus, a parallel corpus of sarcastic tweets translated from English into French along with their non-sarcastic representations. To build the bilingual corpus of sarcasm, we select the “SIGN” corpus, a monolingual data set of sarcastic tweets and their non-sarcastic interpretations, created by (Peled and Reichart, 2017). We propose to define linguistic guidelines for developing “TransCasm” which is the first ever bilingual corpus of sarcastic tweets. In addition, we utilise “TransCasm” for building a binary sarcasm classifier in order to identify whether a tweet is sarcastic or not. Our experiment reveals that the sarcasm classifier achieves 61% accuracy on detecting sarcasm in tweets. “TransCasm” is now freely available online and is ready to be explored for further research.

pdf bib
Reproducing a Manual Evaluation of the Simplicity of Text Simplification System Outputs
Maja Popović | Sheila Castilho | Rudali Huidrom | Anya Belz
Proceedings of the 15th International Conference on Natural Language Generation: Generation Challenges

In this paper we describe our reproduction study of the human evaluation of text simplic- ity reported by Nisioi et al. (2017). The work was carried out as part of the ReproGen Shared Task 2022 on Reproducibility of Evaluations in NLG. Our aim was to repeat the evaluation of simplicity for nine automatic text simplification systems with a different set of evaluators. We describe our experimental design together with the known aspects of the original experimental design and present the results from both studies. Pearson correlation between the original and reproduction scores is moderate to high (0.776). Inter-annotator agreement in the reproduction study is lower (0.40) than in the original study (0.66). We discuss challenges arising from the unavailability of certain aspects of the origi- nal set-up, and make several suggestions as to how reproduction of similar evaluations can be made easier in future.

pdf bib
MT-Pese: Machine Translation and Post-Editese
Sheila Castilho | Natália Resende
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

This paper introduces the MT-Pese project, which aims at researching the post-editese phenomena in machine translated texts. We describe a range of experiments performed in order to gauge the effect of post-editese in dif-ferent domains, backtranslation, and quality.

pdf bib
DELA Project: Document-level Machine Translation Evaluation
Sheila Castilho
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

This paper presents the results of the DELA Project. We describe the testing of context span for document-level evaluation, construction of a document-level corpus, and context position, as well as the latest developments of the project when looking at human and automatic evaluation metrics for document-level evaluation.

pdf bib
Achievements of the PRINCIPLE Project: Promoting MT for Croatian, Icelandic, Irish and Norwegian
Petra Bago | Sheila Castilho | Jane Dunne | Federico Gaspari | Andre K | Gauti Kristmannsson | Jon Arild Olsen | Natalia Resende | Níels Rúnar Gíslason | Dana D. Sheridan | Páraic Sheridan | John Tinsley | Andy Way
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation

This paper provides an overview of the main achievements of the completed PRINCIPLE project, a 2-year action funded by the European Commission under the Connecting Europe Facility (CEF) programme. PRINCIPLE focused on collecting high-quality language resources for Croatian, Icelandic, Irish and Norwegian, which are severely low-resource languages, especially for building effective machine translation (MT) systems. We report the achievements of the project, primarily, in terms of the large amounts of data collected for all four low-resource languages and of promoting the uptake of neural MT (NMT) for these languages.

2021

pdf bib
Towards Document-Level Human MT Evaluation: On the Issues of Annotator Agreement, Effort and Misevaluation
Sheila Castilho
Proceedings of the Workshop on Human Evaluation of NLP Systems (HumEval)

Document-level human evaluation of machine translation (MT) has been raising interest in the community. However, little is known about the issues of using document-level methodologies to assess MT quality. In this article, we compare the inter-annotator agreement (IAA) scores, the effort to assess the quality in different document-level methodologies, and the issue of misevaluation when sentences are evaluated out of context.

bib
Building MT systems in low resourced languages for Public Sector users in Croatia, Iceland, Ireland, and Norway
Róisín Moran | Carla Para Escartín | Akshai Ramesh | Páraic Sheridan | Jane Dunne | Federico Gaspari | Sheila Castilho | Natalia Resende | Andy Way
Proceedings of Machine Translation Summit XVIII: Users and Providers Track

When developing Machine Translation engines, low resourced language pairs tend to be in a disadvantaged position: less available data means that developing robust MT models can be more challenging. The EU-funded PRINCIPLE project aims at overcoming this challenge for four low resourced European languages: Norwegian, Croatian, Irish and Icelandic. This presentation will give an overview of the project, with a focus on the set of Public Sector users and their use cases for which we have developed MT solutions. We will discuss the range of language resources that have been gathered through contributions from public sector collaborators, and present the extensive evaluations that have been undertaken, including significant user evaluation of MT systems across all of the public sector participants in each of the four countries involved.

pdf bib
DELA Corpus - A Document-Level Corpus Annotated with Context-Related Issues
Sheila Castilho | João Lucas Cavalheiro Camargo | Miguel Menezes | Andy Way
Proceedings of the Sixth Conference on Machine Translation

Recently, the Machine Translation (MT) community has become more interested in document-level evaluation especially in light of reactions to claims of “human parity”, since examining the quality at the level of the document rather than at the sentence level allows for the assessment of suprasentential context, providing a more reliable evaluation. This paper presents a document-level corpus annotated in English with context-aware issues that arise when translating from English into Brazilian Portuguese, namely ellipsis, gender, lexical ambiguity, number, reference, and terminology, with six different domains. The corpus can be used as a challenge test set for evaluation and as a training/testing corpus for MT as well as for deep linguistic analysis of context issues. To the best of our knowledge, this is the first corpus of its kind.

2020

pdf bib
On Context Span Needed for Machine Translation Evaluation
Sheila Castilho | Maja Popović | Andy Way
Proceedings of the Twelfth Language Resources and Evaluation Conference

Despite increasing efforts to improve evaluation of machine translation (MT) by going beyond the sentence level to the document level, the definition of what exactly constitutes a “document level” is still not clear. This work deals with the context span necessary for a more reliable MT evaluation. We report results from a series of surveys involving three domains and 18 target languages designed to identify the necessary context span as well as issues related to it. Our findings indicate that, despite the fact that some issues and spans are strongly dependent on domain and on the target language, a number of common patterns can be observed so that general guidelines for context-aware MT evaluation can be drawn.

pdf bib
A human evaluation of English-Irish statistical and neural machine translation
Meghan Dowling | Sheila Castilho | Joss Moorkens | Teresa Lynn | Andy Way
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

With official status in both Ireland and the EU, there is a need for high-quality English-Irish (EN-GA) machine translation (MT) systems which are suitable for use in a professional translation environment. While we have seen recent research on improving both statistical MT and neural MT for the EN-GA pair, the results of such systems have always been reported using automatic evaluation metrics. This paper provides the first human evaluation study of EN-GA MT using professional translators and in-domain (public administration) data for a more accurate depiction of the translation quality available via MT.

pdf bib
Document-Level Machine Translation Evaluation Project: Methodology, Effort and Inter-Annotator Agreement
Sheila Castilho
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

Document-level (doc-level) human eval-uation of machine translation (MT) has raised interest in the community after a fewattempts have disproved claims of “human parity” (Toral et al., 2018; Laubli et al.,2018). However, little is known about bestpractices regarding doc-level human evalu-ation. The goal of this project is to identifywhich methodologies better cope with i)the current state-of-the-art (SOTA) humanmetrics, ii) a possible complexity when as-signing a single score to a text consisted of‘good’ and ‘bad’ sentences, iii) a possibletiredness bias in doc-level set-ups, and iv)the difference in inter-annotator agreement(IAA) between sentence and doc-level set-ups.

pdf bib
On the Same Page? Comparing Inter-Annotator Agreement in Sentence and Document Level Human Machine Translation Evaluation
Sheila Castilho
Proceedings of the Fifth Conference on Machine Translation

Document-level evaluation of machine translation has raised interest in the community especially since responses to the claims of “human parity” (Toral et al., 2018; Läubli et al., 2018) with document-level human evaluations have been published. Yet, little is known about best practices regarding human evaluation of machine translation at the document-level. This paper presents a comparison of the differences in inter-annotator agreement between quality assessments using sentence and document-level set-ups. We report results of the agreement between professional translators for fluency and adequacy scales, error annotation, and pair-wise ranking, along with the effort needed to perform the different tasks. To best of our knowledge, this is the first study of its kind.

2019

pdf bib
Are ambiguous conjunctions problematic for machine translation?
Maja Popović | Sheila Castilho
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

The translation of ambiguous words still poses challenges for machine translation. In this work, we carry out a systematic quantitative analysis regarding the ability of different machine translation systems to disambiguate the source language conjunctions “but” and “and”. We evaluate specialised test sets focused on the translation of these two conjunctions. The test sets contain source languages that do not distinguish different variants of the given conjunction, whereas the target languages do. In total, we evaluate the conjunction “but” on 20 translation outputs, and the conjunction “and” on 10. All machine translation systems almost perfectly recognise one variant of the target conjunction, especially for the source conjunction “but”. The other target variant, however, represents a challenge for machine translation systems, with accuracy varying from 50% to 95% for “but” and from 20% to 57% for “and”. The major error for all systems is replacing the correct target variant with the opposite one.

pdf bib
Large-scale Machine Translation Evaluation of the iADAATPA Project
Sheila Castilho | Natália Resende | Federico Gaspari | Andy Way | Tony O’Dowd | Marek Mazur | Manuel Herranz | Alex Helle | Gema Ramírez-Sánchez | Víctor Sánchez-Cartagena | Mārcis Pinnis | Valters Šics
Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks

bib
Challenge Test Sets for MT Evaluation
Maja Popović | Sheila Castilho
Proceedings of Machine Translation Summit XVII: Tutorial Abstracts

Most of the test sets used for the evaluation of MT systems reflect the frequency distribution of different phenomena found in naturally occurring data (”standard” or ”natural” test sets). However, to better understand particular strengths and weaknesses of MT systems, especially those based on neural networks, it is necessary to apply more focused evaluation procedures. Therefore, another type of test sets (”challenge” test sets, also called ”test suites”) is being increasingly employed in order to highlight points of difficulty which are relevant to model development, training, or using of the given system. This tutorial will be useful for anyone (researchers, developers, users, translators) interested in detailed evaluation and getting a better understanding of machine translation (MT) systems and models. The attendees will learn about the motivation and linguistic background of challenge test sets and a range of testing possibilities applied to the state-of-the-art MT systems, as well as a number of practical aspects and challenges.

pdf bib
What Influences the Features of Post-editese? A Preliminary Study
Sheila Castilho | Natália Resende | Ruslan Mitkov
Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019)

While a number of studies have shown evidence of translationese phenomena, that is, statistical differences between original texts and translated texts (Gellerstam, 1986), results of studies searching for translationese features in postedited texts (what has been called ”posteditese” (Daems et al., 2017)) have presented mixed results. This paper reports a preliminary study aimed at identifying the presence of post-editese features in machine-translated post-edited texts and at understanding how they differ from translationese features. We test the influence of factors such as post-editing (PE) levels (full vs. light), translation proficiency (professionals vs. students) and text domain (news vs. literary). Results show evidence of post-editese features, especially in light PE texts and in certain domains.

2018

pdf bib
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation
Antonio Toral | Sheila Castilho | Ke Hu | Andy Way
Proceedings of the Third Conference on Machine Translation: Research Papers

We reassess a recent study (Hassan et al., 2018) that claimed that machine translation (MT) has reached human parity for the translation of news from Chinese into English, using pairwise ranking and considering three variables that were not taken into account in that previous study: the language in which the source side of the test set was originally written, the translation proficiency of the evaluators, and the provision of inter-sentential context. If we consider only original source text (i.e. not translated from another language, or translationese), then we find evidence showing that human parity has not been achieved. We compare the judgments of professional translators against those of non-experts and discover that those of the experts result in higher inter-annotator agreement and better discrimination between human and machine translations. In addition, we analyse the human translations of the test set and identify important translation issues. Finally, based on these findings, we provide a set of recommendations for future human evaluations of MT.

pdf bib
Reading Comprehension of Machine Translation Output: What Makes for a Better Read?
Sheila Castilho | Ana Guerberof Arenas
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

This paper reports on a pilot experiment that compares two different machine translation (MT) paradigms in reading comprehension tests. To explore a suitable methodology, we set up a pilot experiment with a group of six users (with English, Spanish and Simplified Chinese languages) using an English Language Testing System (IELTS), and an eye-tracker. The users were asked to read three texts in their native language: either the original English text (for the English speakers) or the machine-translated text (for the Spanish and Simplified Chinese speakers). The original texts were machine-translated via two MT systems: neural (NMT) and statistical (SMT). The users were also asked to rank satisfaction statements on a 3-point scale after reading each text and answering the respective comprehension questions. After all tasks were completed, a post-task retrospective interview took place to gather qualitative data. The findings suggest that the users from the target languages completed more tasks in less time with a higher level of satisfaction when using translations from the NMT system.

pdf bib
Project PiPeNovel: Pilot on Post-editing Novels
Antonio Toral | Martijn Wieling | Sheila Castilho | Joss Moorkens | Andy Way
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

Given (i) the rise of a new paradigm to machine translation based on neural networks that results in more fluent and less literal output than previous models and (ii) the maturity of machine-assisted translation via post-editing in industry, project PiPeNovel studies the feasibility of the post-editing workflow for literary text conducting experiments with professional literary translators.

pdf bib
Translation Crowdsourcing: Creating a Multilingual Corpus of Online Educational Content
Vilelmini Sosoni | Katia Lida Kermanidis | Maria Stasimioti | Thanasis Naskos | Eirini Takoulidou | Menno van Zaanen | Sheila Castilho | Panayota Georgakopoulou | Valia Kordoni | Markus Egg
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Improving Machine Translation of Educational Content via Crowdsourcing
Maximiliana Behnke | Antonio Valerio Miceli Barone | Rico Sennrich | Vilelmini Sosoni | Thanasis Naskos | Eirini Takoulidou | Maria Stasimioti | Menno van Zaanen | Sheila Castilho | Federico Gaspari | Panayota Georgakopoulou | Valia Kordoni | Markus Egg | Katia Lida Kermanidis
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf bib
Human Evaluation of Multi-modal Neural Machine Translation: A Case-Study on E-Commerce Listing Titles
Iacer Calixto | Daniel Stein | Evgeny Matusov | Sheila Castilho | Andy Way
Proceedings of the Sixth Workshop on Vision and Language

In this paper, we study how humans perceive the use of images as an additional knowledge source to machine-translate user-generated product listings in an e-commerce company. We conduct a human evaluation where we assess how a multi-modal neural machine translation (NMT) model compares to two text-only approaches: a conventional state-of-the-art attention-based NMT and a phrase-based statistical machine translation (PBSMT) model. We evaluate translations obtained with different systems and also discuss the data set of user-generated product listings, which in our case comprises both product listings and associated images. We found that humans preferred translations obtained with a PBSMT system to both text-only and multi-modal NMT over 56% of the time. Nonetheless, human evaluators ranked translations from a multi-modal NMT model as better than those of a text-only NMT over 88% of the time, which suggests that images do help NMT in this use-case.

pdf bib
Using Images to Improve Machine-Translating E-Commerce Product Listings.
Iacer Calixto | Daniel Stein | Evgeny Matusov | Pintu Lohar | Sheila Castilho | Andy Way
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

In this paper we study the impact of using images to machine-translate user-generated e-commerce product listings. We study how a multi-modal Neural Machine Translation (NMT) model compares to two text-only approaches: a conventional state-of-the-art attentional NMT and a Statistical Machine Translation (SMT) model. User-generated product listings often do not constitute grammatical or well-formed sentences. More often than not, they consist of the juxtaposition of short phrases or keywords. We train our models end-to-end as well as use text-only and multi-modal NMT models for re-ranking n-best lists generated by an SMT model. We qualitatively evaluate our user-generated training data also analyse how adding synthetic data impacts the results. We evaluate our models quantitatively using BLEU and TER and find that (i) additional synthetic data has a general positive impact on text-only and multi-modal NMT models, and that (ii) using a multi-modal NMT model for re-ranking n-best lists improves TER significantly across different n-best list sizes.

pdf bib
A Comparative Quality Evaluation of PBSMT and NMT using Professional Translators
Sheila Castilho | Joss Moorkens | Federico Gaspari | Rico Sennrich | Vilelmini Sosoni | Panayota Georgakopoulou | Pintu Lohar | Andy Way | Antonio Valerio Miceli-Barone | Maria Gialama
Proceedings of Machine Translation Summit XVI: Research Track

pdf bib
Translation Dictation vs. Post-editing with Cloud-based Voice Recognition: A Pilot Experiment
Julián Zapata | Sheila Castilho | Joss Moorkens
Proceedings of Machine Translation Summit XVI: Commercial MT Users and Translators Track

2016

pdf bib
Evaluating the Impact of Light Post-Editing on Usability
Sheila Castilho | Sharon O’Brien
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

This paper discusses a methodology to measure the usability of machine translated content by end users, comparing lightly post-edited content with raw output and with the usability of source language content. The content selected consists of Online Help articles from a software company for a spreadsheet application, translated from English into German. Three groups of five users each used either the source text - the English version (EN) -, the raw MT version (DE_MT), or the light PE version (DE_PE), and were asked to carry out six tasks. Usability was measured using an eye tracker and cognitive, temporal and pragmatic measures of usability. Satisfaction was measured via a post-task questionnaire presented after the participants had completed the tasks.

2015

pdf bib
Reading metrics for estimating task efficiency with MT output
Sigrid Klerke | Sheila Castilho | Maria Barrett | Anders Søgaard
Proceedings of the Sixth Workshop on Cognitive Aspects of Computational Language Learning

2014

pdf bib
Does post-editing increase usability? A study with Brazilian Portuguese as target language
Sheila Castilho | Sharon O’Brien | Fabio Alves | Morgan O’Brien
Proceedings of the 17th Annual Conference of the European Association for Machine Translation

2012

pdf bib
PET: a Tool for Post-editing and Assessing Machine Translation
Wilker Aziz | Sheila Castilho | Lucia Specia
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Given the significant improvements in Machine Translation (MT) quality and the increasing demand for translations, post-editing of automatic translations is becoming a popular practice in the translation industry. It has been shown to allow for much larger volumes of translations to be produced, saving time and costs. In addition, the post-editing of automatic translations can help understand problems in such translations and this can be used as feedback for researchers and developers to improve MT systems. Finally, post-editing can be used as a way of evaluating the quality of translations in terms of how much post-editing effort these translations require. We describe a standalone tool that has two main purposes: facilitate the post-editing of translations from any MT system so that they reach publishable quality and collect sentence-level information from the post-editing process, e.g.: post-editing time and detailed keystroke statistics.
Search