Sheng Liang


pdf bib
Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages
Ercong Nie | Sheng Liang | Helmut Schmid | Hinrich Schütze
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual Pretrained Language Models (MPLMs) perform strongly in cross-lingual transfer. We propose Prompts Augmented by Retrieval Crosslingually (PARC) to improve zero-shot performance on low-resource languages (LRLs) by augmenting the context with prompts consisting of semantically similar sentences retrieved from a high-resource language (HRL). PARC improves zero-shot performance on three downstream tasks (sentiment classification, topic categorization, natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in unlabeled (+5.1%) and labeled settings (+16.3%). PARC also outperforms finetuning by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.

pdf bib
Crosslingual Retrieval Augmented In-context Learning for Bangla
Xiaoqian Li | Ercong Nie | Sheng Liang
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

The promise of Large Language Models (LLMs) in Natural Language Processing has often been overshadowed by their limited performance in low-resource languages such as Bangla. To address this, our paper presents a pioneering approach that utilizes cross-lingual retrieval augmented in-context learning. By strategically sourcing semantically similar prompts from high-resource language, we enable multilingual pretrained language models (MPLMs), especially the generative model BLOOMZ, to successfully boost performance on Bangla tasks. Our extensive evaluation highlights that the cross-lingual retrieval augmented prompts bring steady improvements to MPLMs over the zero-shot performance.


pdf bib
Modular and Parameter-Efficient Multimodal Fusion with Prompting
Sheng Liang | Mengjie Zhao | Hinrich Schuetze
Findings of the Association for Computational Linguistics: ACL 2022

Recent research has made impressive progress in large-scale multimodal pre-training. In the context of the rapid growth of model size, it is necessary to seek efficient and flexible methods other than finetuning. In this paper, we propose to use prompt vectors to align the modalities. Our method achieves comparable performance to several other multimodal fusion methods in low-resource settings. We further show that our method is modular and parameter-efficient for processing tasks involving two or more data modalities.


pdf bib
Monolingual and Multilingual Reduction of Gender Bias in Contextualized Representations
Sheng Liang | Philipp Dufter | Hinrich Schütze
Proceedings of the 28th International Conference on Computational Linguistics

Pretrained language models (PLMs) learn stereotypes held by humans and reflected in text from their training corpora, including gender bias. When PLMs are used for downstream tasks such as picking candidates for a job, people’s lives can be negatively affected by these learned stereotypes. Prior work usually identifies a linear gender subspace and removes gender information by eliminating the subspace. Following this line of work, we propose to use DensRay, an analytical method for obtaining interpretable dense subspaces. We show that DensRay performs on-par with prior approaches, but provide arguments that it is more robust and provide indications that it preserves language model performance better. By applying DensRay to attention heads and layers of BERT we show that gender information is spread across all attention heads and most of the layers. Also we show that DensRay can obtain gender bias scores on both token and sentence levels. Finally, we demonstrate that we can remove bias multilingually, e.g., from Chinese, using only English training data.