Shenghui Li


pdf bib
Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting
Fanghua Ye | Meng Fang | Shenghui Li | Emine Yilmaz
Findings of the Association for Computational Linguistics: EMNLP 2023

Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a “rewrite-then-edit” process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers.


pdf bib
MetaASSIST: Robust Dialogue State Tracking with Meta Learning
Fanghua Ye | Xi Wang | Jie Huang | Shenghui Li | Samuel Stern | Emine Yilmaz
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Existing dialogue datasets contain lots of noise in their state annotations. Such noise can hurt model training and ultimately lead to poor generalization performance. A general framework named ASSIST has recently been proposed to train robust dialogue state tracking (DST) models. It introduces an auxiliary model to generate pseudo labels for the noisy training set. These pseudo labels are combined with vanilla labels by a common fixed weighting parameter to train the primary DST model. Notwithstanding the improvements of ASSIST on DST, tuning the weighting parameter is challenging. Moreover, a single parameter shared by all slots and all instances may be suboptimal. To overcome these limitations, we propose a meta learning-based framework MetaASSIST to adaptively learn the weighting parameter. Specifically, we propose three schemes with varying degrees of flexibility, ranging from slot-wise to both slot-wise and instance-wise, to convert the weighting parameter into learnable functions. These functions are trained in a meta-learning manner by taking the validation set as meta data. Experimental results demonstrate that all three schemes can achieve competitive performance. Most impressively, we achieve a state-of-the-art joint goal accuracy of 80.10% on MultiWOZ 2.4.