Shengkun Ma


2024

pdf bib
A Rationale-centric Counterfactual Data Augmentation Method for Cross-Document Event Coreference Resolution
Bowen Ding | Qingkai Min | Shengkun Ma | Yingjie Li | Linyi Yang | Yue Zhang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Based on Pre-trained Language Models (PLMs), event coreference resolution (ECR) systems have demonstrated outstanding performance in clustering coreferential events across documents. However, the state-of-the-art system exhibits an excessive reliance on the ‘triggers lexical matching’ spurious pattern in the input mention pair text. We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM), aiming to identify spurious and causal associations (i.e., rationales) within the ECR task. Leveraging the debiasing capability of counterfactual data augmentation, we develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop. This method is specialized for pairwise input in the ECR system, where we conduct direct interventions on triggers and context to mitigate the spurious association while emphasizing the causation. Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.

pdf bib
Making Pre-trained Language Models Better Continual Few-Shot Relation Extractors
Shengkun Ma | Jiale Han | Yi Liang | Bo Cheng
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Continual Few-shot Relation Extraction (CFRE) is a practical problem that requires the model to continuously learn novel relations while avoiding forgetting old ones with few labeled training data. The primary challenges are catastrophic forgetting and overfitting. This paper harnesses prompt learning to explore the implicit capabilities of pre-trained language models to address the above two challenges, thereby making language models better continual few-shot relation extractors. Specifically, we propose a Contrastive Prompt Learning framework, which designs prompt representation to acquire more generalized knowledge that can be easily adapted to old and new categories, and margin-based contrastive learning to focus more on hard samples, therefore alleviating catastrophic forgetting and overfitting issues. To further remedy overfitting in low-resource scenarios, we introduce an effective memory augmentation strategy that employs well-crafted prompts to guide ChatGPT in generating diverse samples. Extensive experiments demonstrate that our method outperforms state-of-the-art methods by a large margin and significantly mitigates catastrophic forgetting and overfitting in low-resource scenarios.

2022

pdf bib
Generative Prompt Tuning for Relation Classification
Jiale Han | Shuai Zhao | Bo Cheng | Shengkun Ma | Wei Lu
Findings of the Association for Computational Linguistics: EMNLP 2022

Using prompts to explore the knowledge contained within pre-trained language models for downstream tasks has now become an active topic. Current prompt tuning methods mostly convert the downstream tasks to masked language modeling problems by adding cloze-style phrases and mapping all labels to verbalizations with fixed length, which has proven effective for tasks with simple label spaces. However, when applied to relation classification exhibiting complex label spaces, vanilla prompt tuning methods may struggle with label verbalizations with arbitrary lengths due to rigid prompt restrictions. Inspired by the text infilling task for pre-training generative models that can flexibly predict missing spans, we propose a novel generative prompt tuning method to reformulate relation classification as an infilling problem, which frees our approach from limitations of current prompt based approaches and thus fully exploits rich semantics of entity and relation types. In addition, we design entity-guided decoding and discriminative relation scoring to generate and align relations effectively and efficiently during inference. Extensive experiments under fully supervised settings and low-resource settings demonstrate the effectiveness of our approach.