Shenglong Zhang


2023

pdf bib
Adversarial Multi-task Learning for End-to-end Metaphor Detection
Shenglong Zhang | Ying Liu
Findings of the Association for Computational Linguistics: ACL 2023

Metaphor detection (MD) suffers from limited training data. In this paper, we started with a linguistic rule called Metaphor Identification Procedure and then proposed a novel multi-task learning framework to transfer knowledge in basic sense discrimination (BSD) to MD. BSD is constructed from word sense disambiguation (WSD), which has copious amounts of data. We leverage adversarial training to align the data distributions of MD and BSD in the same feature space, so task-invariant representations can be learned. To capture fine-grained alignment patterns, we utilize the multi-mode structures of MD and BSD. Our method is totally end-to-end and can mitigate the data scarcity problem in MD. Competitive results are reported on four public datasets. Our code and datasets are available.

2022

pdf bib
Metaphor Detection via Linguistics Enhanced Siamese Network
Shenglong Zhang | Ying Liu
Proceedings of the 29th International Conference on Computational Linguistics

In this paper we present MisNet, a novel model for word level metaphor detection. MisNet converts two linguistic rules, i.e., Metaphor Identification Procedure (MIP) and Selectional Preference Violation (SPV) into semantic matching tasks. MIP module computes the similarity between the contextual meaning and the basic meaning of a target word. SPV module perceives the incongruity between target words and their contexts. To better represent basic meanings, MisNet utilizes dictionary resources. Empirical results indicate that MisNet achieves competitive performance on several datasets.

2021

pdf bib
SaGE: 基于句法感知图卷积神经网络和ELECTRA的中文隐喻识别模型(SaGE: Syntax-aware GCN with ELECTRA for Chinese Metaphor Detection)
Shenglong Zhang (张声龙) | Ying Liu (刘颖) | Yanjun Ma (马艳军)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

隐喻是人类语言中经常出现的一种特殊现象,隐喻识别对于自然语言处理各项任务来说具有十分基础和重要的意义。针对中文领域的隐喻识别任务,我们提出了一种基于句法感知图卷积神经网络和ELECTRA的隐喻识别模型(Syntax-aware GCN withELECTRA SaGE)。该模型从语言学出发,使用ELECTRA和Transformer编码器抽取句子的语义特征,将句子按照依存关系组织成一张图并使用图卷积神经网络抽取其句法特征,在此基础上对两类特征进行融合以进行隐喻识别。我们的模型在CCL2018中文隐喻识别评测数据集上以85.22%的宏平均F1分数超越了此前的最佳成绩,验证了融合语义信息和句法信息对于隐喻识别任务具有重要作用。