Shengyao Zhuang
2024
PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval
Shengyao Zhuang
|
Xueguang Ma
|
Bevan Koopman
|
Jimmy Lin
|
Guido Zuccon
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Utilizing large language models (LLMs) for zero-shot document ranking is done in one of two ways: (1) prompt-based re-ranking methods, which require no further training but are only feasible for re-ranking a handful of candidate documents due to computational costs; and (2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training.In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token’s hidden states and the corresponding logits associated with the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM.Our experimental evaluation on the MSMARCO, TREC deep learning and BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.
2023
Open-source Large Language Models are Strong Zero-shot Query Likelihood Models for Document Ranking
Shengyao Zhuang
|
Bing Liu
|
Bevan Koopman
|
Guido Zuccon
Findings of the Association for Computational Linguistics: EMNLP 2023
In the field of information retrieval, Query Likelihood Models (QLMs) rank documents based on the probability of generating the query given the content of a document. Recently, advanced large language models (LLMs) have emerged as effective QLMs, showcasing promising ranking capabilities. This paper focuses on investigating the genuine zero-shot ranking effectiveness of recent LLMs, which are solely pre-trained on unstructured text data without supervised instruction fine-tuning. Our findings reveal the robust zero-shot ranking ability of such LLMs, highlighting that additional instruction fine-tuning may hinder effectiveness unless a question generation task is present in the fine-tuning dataset. Furthermore, we introduce a novel state-of-the-art ranking system that integrates LLM-based QLMs with a hybrid zero-shot retriever, demonstrating exceptional effectiveness in both zero-shot and few-shot scenarios. We make our codebase publicly available at https://github.com/ielab/llm-qlm.
2021
Dealing with Typos for BERT-based Passage Retrieval and Ranking
Shengyao Zhuang
|
Guido Zuccon
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effectively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch – that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos.
Search