Shengyuan Bai


2024

pdf bib
MoleculeQA: A Dataset to Evaluate Factual Accuracy in Molecular Comprehension
Xingyu Lu | He Cao | Zijing Liu | Shengyuan Bai | Leqing Chen | Yuan Yao | Hai-Tao Zheng | Yu Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models are playing an increasingly significant role in molecular research, yet existing models often generate erroneous information. Traditional evaluations fail to assess a model’s factual correctness. To rectify this absence, we present MoleculeQA, a novel question answering (QA) dataset which possesses 62K QA pairs over 23K molecules. Each QA pair, composed of a manual question, a positive option and three negative options, has consistent semantics with a molecular description from authoritative corpus. MoleculeQA is not only the first benchmark to evaluate molecular factual correctness but also the largest molecular QA dataset. A comprehensive evaluation on MoleculeQA for existing molecular LLMs exposes their deficiencies in specific aspects and pinpoints crucial factors for molecular modeling. Furthermore, we employ MoleculeQA in reinforcement learning to mitigate model hallucinations, thereby enhancing the factual correctness of generated information.