Shi Han


2022

pdf bib
HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation
Zhoujun Cheng | Haoyu Dong | Zhiruo Wang | Ran Jia | Jiaqi Guo | Yan Gao | Shi Han | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge numerical reasoning by complex hierarchical indexing, as well as implicit relationships of calculation and semantics. We present a new dataset, HiTab, to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) QA pairs are not proposed by annotators from scratch, but are revised from real and meaningful sentences authored by analysts. (3) to reveal complex numerical reasoning in statistical reports, we provide fine-grained annotations of quantity and entity alignment. Experiments suggest that this HiTab presents a strong challenge for existing baselines and a valuable benchmark for future research. Targeting hierarchical structure, we devise a hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting table reasoning, we leverage entity and quantity alignment to explore partially supervised training in QA and conditional generation in NLG, and largely reduce spurious predictions in QA and produce better descriptions in NLG.

pdf bib
FORTAP: Using Formulas for Numerical-Reasoning-Aware Table Pretraining
Zhoujun Cheng | Haoyu Dong | Ran Jia | Pengfei Wu | Shi Han | Fan Cheng | Dongmei Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tables store rich numerical data, but numerical reasoning over tables is still a challenge. In this paper, we find that the spreadsheet formula, a commonly used language to perform computations on numerical values in spreadsheets, is a valuable supervision for numerical reasoning in tables. Considering large amounts of spreadsheets available on the web, we propose FORTAP, the first exploration to leverage spreadsheet formulas for table pretraining. Two novel self-supervised pretraining objectives are derived from formulas, numerical reference prediction (NRP) and numerical calculation prediction (NCP). While our proposed objectives are generic for encoders, to better capture spreadsheet table layouts and structures, FORTAP is built upon TUTA, the first transformer-based method for spreadsheet table pretraining with tree attention. FORTAP outperforms state-of-the-art methods by large margins on three representative datasets of formula prediction, question answering, and cell type classification, showing the great potential of leveraging formulas for table pretraining.

pdf bib
Accelerating Code Search with Deep Hashing and Code Classification
Wenchao Gu | Yanlin Wang | Lun Du | Hongyu Zhang | Shi Han | Dongmei Zhang | Michael Lyu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Code search is to search reusable code snippets from source code corpus based on natural languages queries. Deep learning-based methods on code search have shown promising results. However, previous methods focus on retrieval accuracy, but lacked attention to the efficiency of the retrieval process. We propose a novel method CoSHC to accelerate code search with deep hashing and code classification, aiming to perform efficient code search without sacrificing too much accuracy. To evaluate the effectiveness of CoSHC, we apply our methodon five code search models. Extensive experimental results indicate that compared with previous code search baselines, CoSHC can save more than 90% of retrieval time meanwhile preserving at least 99% of retrieval accuracy.

2021

pdf bib
CAST: Enhancing Code Summarization with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees
Ensheng Shi | Yanlin Wang | Lun Du | Hongyu Zhang | Shi Han | Dongmei Zhang | Hongbin Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Code summarization aims to generate concise natural language descriptions of source code, which can help improve program comprehension and maintenance. Recent studies show that syntactic and structural information extracted from abstract syntax trees (ASTs) is conducive to summary generation. However, existing approaches fail to fully capture the rich information in ASTs because of the large size/depth of ASTs. In this paper, we propose a novel model CAST that hierarchically splits and reconstructs ASTs. First, we hierarchically split a large AST into a set of subtrees and utilize a recursive neural network to encode the subtrees. Then, we aggregate the embeddings of subtrees by reconstructing the split ASTs to get the representation of the complete AST. Finally, AST representation, together with source code embedding obtained by a vanilla code token encoder, is used for code summarization. Extensive experiments, including the ablation study and the human evaluation, on benchmarks have demonstrated the power of CAST. To facilitate reproducibility, our code and data are available at https://github.com/DeepSoftwareAnalytics/CAST.