Shiao Meng
2024
On the Robustness of Document-Level Relation Extraction Models to Entity Name Variations
Shiao Meng
|
Xuming Hu
|
Aiwei Liu
|
Fukun Ma
|
Yawen Yang
|
Shuang Li
|
Lijie Wen
Findings of the Association for Computational Linguistics: ACL 2024
Driven by the demand for cross-sentence and large-scale relation extraction, document-level relation extraction (DocRE) has attracted increasing research interest. Despite the continuous improvement in performance, we find that existing DocRE models which initially perform well may make more mistakes when merely changing the entity names in the document, hindering the generalization to novel entity names. To this end, we systematically investigate the robustness of DocRE models to entity name variations in this work. We first propose a principled pipeline to generate entity-renamed documents by replacing the original entity names with names from Wikidata. By applying the pipeline to DocRED and Re-DocRED datasets, we construct two novel benchmarks named Env-DocRED and Env-Re-DocRED for robustness evaluation. Experimental results show that both three representative DocRE models and two in-context learned large language models consistently lack sufficient robustness to entity name variations, particularly on cross-sentence relation instances and documents with more entities. Finally, we propose an entity variation robust training method which not only improves the robustness of DocRE models but also enhances their understanding and reasoning capabilities. We further verify that the basic idea of this method can be effectively transferred to in-context learning for DocRE as well.
2023
RAPL: A Relation-Aware Prototype Learning Approach for Few-Shot Document-Level Relation Extraction
Shiao Meng
|
Xuming Hu
|
Aiwei Liu
|
Shuang Li
|
Fukun Ma
|
Yawen Yang
|
Lijie Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
How to identify semantic relations among entities in a document when only a few labeled documents are available? Few-shot document-level relation extraction (FSDLRE) is crucial for addressing the pervasive data scarcity problem in real-world scenarios. Metric-based meta-learning is an effective framework widely adopted for FSDLRE, which constructs class prototypes for classification. However, existing works often struggle to obtain class prototypes with accurate relational semantics: 1) To build prototype for a target relation type, they aggregate the representations of all entity pairs holding that relation, while these entity pairs may also hold other relations, thus disturbing the prototype. 2) They use a set of generic NOTA (none-of-the-above) prototypes across all tasks, neglecting that the NOTA semantics differs in tasks with different target relation types. In this paper, we propose a relation-aware prototype learning method for FSDLRE to strengthen the relational semantics of prototype representations. By judiciously leveraging the relation descriptions and realistic NOTA instances as guidance, our method effectively refines the relation prototypes and generates task-specific NOTA prototypes. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches by average 2.61% F1 across various settings of two FSDLRE benchmarks.