We introduce SPAGHETTI: Semantic Parsing Augmented Generation for Hybrid English information from Text Tables and Infoboxes, a hybrid question-answering (QA) pipeline that utilizes information from heterogeneous knowledge sources, including knowledge base, text, tables, and infoboxes. Our LLM-augmented approach achieves state-of-the-art performance on the Compmix dataset, the most comprehensive heterogeneous open-domain QA dataset, with 56.5% exact match (EM) rate. More importantly, manual analysis on a sample of the dataset suggests that SPAGHETTI is more than 90% accurate, indicating that EM is no longer suitable for assessing the capabilities of QA systems today.
Large Language Models (LLMs) have led to significant improvements in the Knowledge Base Question Answering (KBQA) task. However, datasets used in KBQA studies do not capture the true complexity of KBQA tasks. They either have simple questions, use synthetically generated logical forms, or are based on small knowledge base (KB) schemas.We introduce the SPINACH dataset, an expert-annotated KBQA dataset collected from discussions on Wikidata’s “Request a Query” forum with 320 decontextualized question-SPARQL pairs. The complexity of these in-the-wild queries calls for a KBQA system that can dynamically explore large and often incomplete schemas and reason about them, as it is infeasible to create a comprehensive training dataset. We also introduce an in-context learning KBQA agent, also called SPINACH, that mimics how a human expert would write SPARQLs to handle challenging questions. SPINACH achieves a new state of the art on the QALD-7, QALD-9 Plus and QALD-10 datasets by 31.0%, 27.0%, and 10.0% in F1, respectively, and coming within 1.6% of the fine-tuned LLaMA SOTA model on WikiWebQuestions.On our new SPINACH dataset, the SPINACH agent outperforms all baselines, including the best GPT-4-based KBQA agent, by at least 38.1% in F1.
While large language models (LLMs) can answer many questions correctly, they can also hallucinate and give wrong answers. Wikidata, with its over 12 billion facts, can be used to ground LLMs to improve their factuality. This paper presents WikiWebQuestions, a high-quality question answering benchmark for Wikidata. Ported over from WebQuestions for Freebase, it consists of real-world data with SPARQL annotation. This paper presents a few-shot sequence-to-sequence semantic parser for Wikidata. We modify SPARQL to use the unique domain and property names instead of their IDs. We train the parser to use either the results from an entity linker or mentions in the query. We fine-tune LLaMA by adding the few-shot training data to that used to fine-tune Alpaca. Our experimental results demonstrate the effectiveness of this methodology, establishing a strong baseline of 76% and 65% answer accuracy in the dev and test sets of WikiWebQuestions, respectively. By pairing our semantic parser with GPT-3, we combine verifiable results with qualified GPT-3 guesses to provide useful answers to 96% of the questions in dev. We also show that our method outperforms the state-of-the-art for the QALD-7 Wikidata dataset by 3.6% in F1 score.