Shiguang Wu
2024
MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning
Pengjie Ren
|
Chengshun Shi
|
Shiguang Wu
|
Mengqi Zhang
|
Zhaochun Ren
|
Maarten de Rijke
|
Zhumin Chen
|
Jiahuan Pei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Parameter-efficient fine-tuning (PEFT) is a popular method for tailoring pre-trained large language models (LLMs), especially as the models’ scale and the diversity of tasks increase. Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional, i.e., significant model changes can be represented with relatively few parameters. However, decreasing the rank encounters challenges with generalization errors for specific tasks when compared to full-parameter fine-tuning. We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank, thereby offering improved performance potential.The core idea is to freeze original pretrained weights and train a group of mini LoRAs with only a small number of parameters. This can capture a significant degree of diversity among mini LoRAs, thus promoting better generalization ability. We conduct a theoretical analysis and empirical studies on various NLP tasks. Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks, which demonstrates the effectiveness of MELoRA.
Search
Co-authors
- Pengjie Ren 1
- Chengshun Shi 1
- Mengqi Zhang 1
- Zhaochun Ren 1
- Maarten de Rijke 1
- show all...
Venues
- acl1