Shiming He


2024

pdf bib
Demonstration Retrieval-Augmented Generative Event Argument Extraction
Shiming He | Yu Hong | Shuai Yang | Jianmin Yao | Guodong Zhou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We tackle Event Argument Extraction (EAE) in the manner of template-based generation. Based on our exploration of generative EAE, it suffers from several issues, such as multiple arguments of one role, generating words out of context and inconsistency with prescribed format. We attribute it to the weakness of following complex input prompts. To address these problems, we propose the demonstration retrieval-augmented generative EAE (DRAGEAE), containing two components: event knowledge-injected generator (EKG) and demonstration retriever (DR). EKG employs event knowledge prompts to capture role dependencies and semantics. DR aims to search informative demonstrations from training data, facilitating the conditional generation of EKG. To train DR, we use the probability-based rankings from large language models (LLMs) as supervised signals. Experimental results on ACE-2005, RAMS and WIKIEVENTS demonstrate that our method outperforms all strong baselines and it can be generalized to various datasets. Further analysis is conducted to discuss the impact of diverse LLMs and prove that our model alleviates the above issues.

pdf bib
Word-level Commonsense Knowledge Selection for Event Detection
Shuai Yang | Yu Hong | Shiming He | Qingting Xu | Jianmin Yao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Event Detection (ED) is a task of automatically extracting multi-class trigger words. The understanding of word sense is crucial for ED. In this paper, we utilize context-specific commonsense knowledge to strengthen word sense modeling. Specifically, we leverage a Context-specific Knowledge Selector (CKS) to select the exact commonsense knowledge of words from a large knowledge base, i.e., ConceptNet. Context-specific selection is made in terms of the relevance of knowledge to the living contexts. On this basis, we incorporate the commonsense knowledge into the word-level representations before decoding. ChatGPT is an ideal generative CKS when the prompts are deliberately designed, though it is cost-prohibitive. To avoid the heavy reliance on ChatGPT, we train an offline CKS using the predictions of ChatGPT over a small number of examples (about 9% of all). We experiment on the benchmark ACE-2005 dataset. The test results show that our approach yields substantial improvements compared to the BERT baseline, achieving the F1-score of about 78.3%. All models, source codes and data will be made publicly available.

2022

pdf bib
Unregulated Chinese-to-English Data Expansion Does NOT Work for Neural Event Detection
Zhongqiu Li | Yu Hong | Jie Wang | Shiming He | Jianmin Yao | Guodong Zhou
Proceedings of the 29th International Conference on Computational Linguistics

We leverage cross-language data expansion and retraining to enhance neural Event Detection (abbr., ED) on English ACE corpus. Machine translation is utilized for expanding English training set of ED from that of Chinese. However, experimental results illustrate that such strategy actually results in performance degradation. The survey of translations suggests that the mistakenly-aligned triggers in the expanded data negatively influences the retraining process. We refer this phenomenon to “trigger falsification”. To overcome the issue, we apply heuristic rules for regulating the expanded data, fixing the distracting samples that contain the falsified triggers. The supplementary experiments show that the rule-based regulation is beneficial, yielding the improvement of about 1.6% F1-score for ED. We additionally prove that, instead of transfer learning from the translated ED data, the straight data combination by random pouring surprisingly performs better.